K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2019

a ) \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)\times1280\)

\(\frac{1}{2}\times1280+\frac{1}{4}\times1280+\frac{1}{8}\times1280+\frac{1}{16}\times1280+\frac{1}{32}\times1280+\frac{1}{64}\times1280\)\(+\frac{1}{128}\times1280\)

= 640 + 320 + 160 + 80 + 40 + 20 + 10

= ( 640 + 160 ) + ( 320 + 80 ) + ( 40 + 20 + 10 )

= 800 + 400 + 70

= 1270

12 tháng 5 2019

b ) ( 2019 - 2017 ) + ( 2015 - 2013 ) + ... + ( 7 - 5 ) + ( 3 - 1 )  (có 505 cặp số )

= 2 + 2 + ... + 2 + 2 ( có 505 số 2 )

= 2 x 505

= 1010

b: A=1/3+1/9+...+1/3^10

=>3A=1+1/3+...+1/3^9

=>A*2=1-1/3^10=(3^10-1)/3^10

=>A=(3^10-1)/(2*3^10)

c: C=3/2+3/8+3/32+3/128+3/512

=>4C=6+3/2+...+3/128

=>3C=6-3/512

=>C=1023/512

d: A=1/2+...+1/256

=>2A=1+1/2+...+1/128

=>A=1-1/256=255/256

20 tháng 1 2018

a)    \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(=1+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\)

\(\Rightarrow\)\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}\)

\(\Rightarrow\)\(2A-A=\left(2+1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^6}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)\)

\(\Leftrightarrow\)\(A=2-\frac{1}{2^7}=\frac{255}{128}\)

20 tháng 1 2018

b)  \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{21}\right)\)

\(=\frac{1}{2}.\frac{2}{7}=\frac{1}{7}\)

2 tháng 7 2019

Bài 1:

2 tháng 7 2019

Bài 1: 1/3+1/9+1/27+1/81+1/243+1/729

Đặt:
A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
Nhân A với 3 ta có:
\(Ax3=3+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow Ax3-S=3-\frac{1}{243}\)
\(\Rightarrow2A=\frac{2186}{729}\)
\(\Rightarrow A=\frac{2186}{729}:2\)
\(\Rightarrow A=\frac{1093}{729}\)

a) = \(\frac{127}{96}\)

b) = \(\frac{255}{256}\)

c) Mik bỏ nha

d) = \(\frac{1023}{512}\)

e) = \(\frac{2343}{625}\)

10 tháng 8 2017

bạn có thể trả lời rõ ra được ko

25 tháng 10 2020

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

đặt A = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\) 

\(A\cdot2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(A\cdot2-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)\) \(-\) \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)\)

\(A=\) \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}-\frac{1}{64}-\frac{1}{128}\)

\(A=1-\frac{1}{128}\)

\(A=\frac{127}{128}\)

25 tháng 10 2020

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

Ta lấy\(\frac{1}{128}\)là MSC. Ta tính được \(\frac{64}{128}+\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}+\frac{1}{128}\)

Kết quả bằng \(\frac{127}{128}\)

14 tháng 1 2018

127/128

14 tháng 1 2018

1/2 + 1/4 + 1/8 + 1/16 +1/32 + 1/64 + 1/128

=1-1/2+1/2-1/4+1/4-1/8+...+1/64+1/128

=1-1/128

=127/128

18 tháng 3 2017

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{64}-\frac{1}{128}\)

\(=1-\frac{1}{128}\)

\(=\frac{127}{128}\)

18 tháng 3 2017

A=\(\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)=\frac{1}{2}\left(1+A-\frac{1}{2}-\frac{1}{128}\right)\)

2A=\(A+\frac{1}{2}-\frac{1}{128}=A+\frac{63}{128}\)

=> A=\(\frac{63}{128}\)