Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{17}{28}+18.29+\frac{19}{30}+\frac{30}{31}\right).\left(\frac{-5}{12}+\frac{1}{4}+\frac{1}{6}\right)\)
\(=\left(\frac{17}{28}+18.29+\frac{19}{30}+\frac{30}{31}\right).\left(\frac{-5}{12}+\frac{3}{12}+\frac{2}{12}\right)\)
\(=\left(\frac{17}{28}+18.29+\frac{19}{30}+\frac{30}{31}\right).\left(\frac{-2}{12}+\frac{2}{12}\right)\)
\(=\left(\frac{17}{28}+18.29+\frac{19}{30}+\frac{30}{31}\right).0\)
\(=0\)
\(A=\dfrac{1}{3.5}+\dfrac{1}{7.9}+...+\dfrac{1}{37.39}\\ =\dfrac{1}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{7.9}+...+\dfrac{2}{37.39}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{39}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{39}\right)\\ =\dfrac{1}{2}.\dfrac{4}{13}\\ =\dfrac{2}{13}\)
Ta có: A = \(\frac{6}{5\times7}+\frac{6}{7\times9}+\frac{6}{9\times11}+...+\frac{6}{95\times97}+\frac{6}{97\times99}\)
\(\Rightarrow A=\frac{1}{6}\left(\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}+...+\frac{1}{95\times97}+\frac{1}{97\times99}\right)\)
\(\Rightarrow A=\frac{1}{6}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Rightarrow A=\frac{1}{6}\left(\frac{1}{5}-\frac{1}{99}\right)\)
=> A = ...
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)
b1
a) \(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{1}{5}-\dfrac{1}{10}\)
\(=\dfrac{2}{10}-\dfrac{1}{10}\)
\(=\dfrac{1}{10}\)
b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{1}-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
c) \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\)
\(=\dfrac{1}{3}-\dfrac{1}{11}\)
\(=\dfrac{8}{33}\)
d) \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=\dfrac{1}{3}-\dfrac{1}{101}\)
\(=\dfrac{98}{303}\)
b)
S2=6/2x5+6/5x8+6/8x11+...+6/29x32
=2.(3/2.5+3/5.8+...+3/29.32)
=2.(1/2-1/5+1/5-1/8+...+1/29-1/32)
=2.(1/2-1/32)
=2.15/32
=15/16
a)
Ta có:
S1=2/3x5+2/5x7+2/7x9+...+2/97x99
=1/3-1/5+1/5-1/7+...+1/97-1/99
=1/3-1/99
=32/99
a) \(a=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{37\cdot39}\)
\(a=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\)
\(a=\frac{1}{3}-\frac{1}{39}\)
\(a=\frac{12}{39}\)
b) \(\left(\frac{17}{28}+18.29+\frac{19}{30}+\frac{30}{31}\right)\cdot\left(\frac{-5}{12}+\frac{1}{4}+\frac{1}{6}\right)\)
\(=\left(\frac{17}{28}+18.29+\frac{19}{30}+\frac{30}{31}\right)\cdot\left(\frac{-5}{12}+\frac{3}{12}+\frac{2}{12}\right)\)
\(=\left(\frac{17}{28}+18.29+\frac{19}{30}+\frac{30}{31}\right)\cdot\left(\frac{-2}{12}+\frac{2}{12}\right)\)
\(=\left(\frac{17}{28}+18.29+\frac{19}{30}+\frac{30}{31}\right)\cdot0\)
\(=0\)
a) \(A=\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+...+\frac{2}{37x39}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{37}-\frac{1}{39}\)
\(A=\frac{1}{3}-\frac{1}{39}\)
\(A=\frac{4}{13}\)
b) \(\left(\frac{17}{28}+18.29+\frac{19}{30}+\frac{30}{31}\right)x\left(\frac{-5}{12}+\frac{1}{4}+\frac{1}{6}\right)\)
\(=\left(\frac{17}{28}+18.29+\frac{19}{30}+\frac{30}{31}\right)x0\)
\(=0\)