K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 6 2023

1. 

$=153^2+2.47.153+47^2=(153+47)^2=200^2=40000$

2.

$=1,24^2-2.1,24.0,24+0,24^2=(1,24-0,24)^2=1^2=1$

3. Không phù hợp để tính nhanh 

4. 

$=15^8-(15^8-1)=1$

5.

$=(1^2-2^2)+(3^2-4^2)+(5^2-6^2)+...+(2019^2-2020^2)$

$=(1-2)(1+2)+(3-4)(3+4)+(5-6)(5+6)+...+(2019-2020)(2019+2020)$

$=(-1)(1+2)+(-1)(3+4)+(-1)(5+6)+....+(-1)(2019+2020)$

$=(-1)(1+2+3+4+....+2019+2020)=(-1).2020(2020+1):2=-2041210$

DT
23 tháng 6 2023

6:

\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =1.\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^4-1\right)\left(2^4+1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^8-1\right)....\left(2^{2020}+1\right)+1\\ =\left(2^{2020}-1\right)\left(2^{2020}+1\right)+1\\ =2^{4040}-1+1=2^{4040}\)

18 tháng 2 2020

Tính nhanh:
a)       

153^2 + 94 * 153 + 47^2
= 153 * (153 + 94) + 47^2
= 153 * 247 + 47^2
= 153 * (200 + 47) + 47^2
= 153 * 200 + 153 * 47 + 47^2
= 153 * 200 + 47 * (153 + 47)
= 153 * 200 + 47 * 200

= 200 * (153 + 47)
= 200 * 200
= 40000

b)126^2 - 152.126 + 5776
= 126 . 126 - 152.126 +126. 2888/63
= 126 . ( 126 - 152 + 2888/63)
= 126 . 1250/63
= 2500

Câu c bn tự làm nha

19 tháng 2 2020

a) \(153^2+94.153+47^2=153^2+2.47.153+47^2\)

\(=\left(153+47\right)^2=200^2=40000\)

b) \(126^2-152.126+5776=126^2-2.76.126+76^2\)

\(=\left(126-76\right)^2=50^2=2500\)

c) \(3^8.5^8-\left(15^4-1\right)\left(15^4+1\right)=15^8-\left[\left(15^4\right)^2-1\right]\)

\(=15^8-\left(15^8-1\right)=15^8-15^8+1=1\)

A: \(135^2+94\cdot153+47^2=135^2\cdot2\cdot47+153\cdot47\)

\(=47\left(36450+153\right)=36603\cdot47=1720341\)

B: \(126^2-152\cdot126+5776=126^2-2\cdot126\cdot76+76^2=\left(126-76\right)^2=50^2=2500\)

C: \(3^8\cdot5^8-\left(15^4-1\right)\left(15^4+1\right)=15^8-\left(15^8-1\right)=15^8-15^8+1=1\)

21 tháng 8 2017

a) \(A=5^4.3^4-\left(15^2-1\right)\left(15^2+1\right)=\left(5.3\right)^4-\left(\left(15^2\right)^2-1^2\right)\)

\(=15^4-\left(15^4-1\right)=15^4-15^4+1=1\)

b) \(C=50^2-49^2+48^2-47^2+...+2^2-1^2\)

\(=\left(50^2-49^2\right)+\left(48^2-47^2\right)+...+\left(2^2-1^2\right)\)

\(=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=1.99+1.95+...+1.3=99+95+...+3\)

\(=\left(99+3\right)+\left(95+7\right)+...+\left(55+47\right)+51\)

\(=102+102+...+102+51\)

số lượng con số \(102\)\(\dfrac{25-1}{2}=12\)

\(\Rightarrow C=102.12+51=1224+51=1275\)

Bài 2: Rút gọn biểu thức sau một cách nhanh nhất:

a, A=(6x-2)2+(2-5x)2+2.(6x-2)(2-5x)

\(=\left(6x-2\right)^2+2\left(6x-2\right)\left(2-5x\right)+\left(2-5x\right)^2\)

\(\text{(Hằng đẳng thức số 2)}\)

\(=\left(6x-2+2-5x\right)\)

\(=x\)

\(B=\left(2a^2+2a+1\right)\left(2a^2-2a+1\right)-\left(2a^2+1\right)^2\)

\(=\left(2a^2+1+2a\right)\left(2a^2+1-2a\right)-\left(2a^2+1\right)^2\)

\(=\left(2a^2+1\right)^2-4a^2-\left(2a^2+1\right)^2\)

\(=-4a^2\)

21 tháng 8 2020

Ta có : 12 - 22 + 32 - 42 +  52 - 62 + .... + 20192 - 20202

= (1 - 2)(1 + 2) + (3 - 4)(3 + 4) + (5 - 6)(5 + 6) + .... + (2019 - 2020)(2020 + 2019)

= -3 - 7 - 11 - ...  - 4039

= - (3 + 7 + 11 + ... + 4039)

= - 1010.(4039 + 3) : 2 

= - 1010.2021

= -2041210

21 tháng 8 2020

\(=\left(2^2-1\right)+\left(4^2-3^2\right)+\left(6^2-5^2\right)+...+\left(2020^2-2019^2\right)=\)

\(=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(2020-2019\right)\left(2020+2019\right)=\)

\(=3+7+11+....+4039=\frac{1009\left(4039+3\right)}{2}=\)

29 tháng 10 2017

Bài 1 :

a ) Ta có :

\(3^4.5^4-\left(15^2+1\right)\left(15^2-1\right)\)

\(=15^4-\left(15^4-1\right)\)

\(=15^4-15^4+1\)

\(=1\)

b ) Ta có :

\(x=11\Rightarrow x+1=12\)

Thay \(x+1=12\) vào biểu thức ta được :

\(x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+111\)

\(=x^4-x^4-x^3+x^3-x^2+x^2-x+111\)

\(=111-x\)

Thay \(x=11\) vào biểu thức vừa rút gọn ta được :

\(111-11=100\)

29 tháng 10 2017

\(a,3^4.5^4-\left(15^2+1\right)\left(15^2-1\right)\)

\(=\left(3.5\right)^4-\left(15^4-1\right)\)

\(=15^4-15^4+1\)

\(=1\)

Bài 2:

\(a,\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)

\(=\left(6x+1\right)^2-2.\left(6x+1\right)\left(6x-1\right)+\left(6x-1\right)^2\)

\(=\left(6x+1-6x+1\right)^2\)

\(=2^2=4\)

\(b,3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

21 tháng 8 2020

Đặt :

\(H=1^2-2^2+3^2-4^2+5^2-6^2+......+2019^2-2020^2\)

\(=\left(1^2-2^2\right)+\left(3^2-4^2\right)+.\left(5^2-6^2\right)+...+\left(2019^2-2020^2\right)\) (Có 1010 nhóm)

\(=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+....+\left(2019-2020\right)\left(2019+2020\right)\)

\(=-3-7-11-......-4039\)

\(=-\left(3+7+11+4039\right)\)

\(=-\frac{\left(4039+3\right).1010}{2}\)

\(=-2041210\)

Vậy....