Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a;b;c\ne0\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}=\frac{1}{a+b+c}\)\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a+b=0\\ab=-c\left(a+b+c\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\ab+ac+bc+c^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\\left(a+c\right)\left(b+c\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\a+c=0\\b+c=0\end{matrix}\right.\)
\(M=\left(a^{2015}+b^{2015}\right)\left(a^{2017}+b^{2017}\right)\left(a^{2019}+b^{2019}\right)\)
- Nếu \(a+b=0\Rightarrow M=0\)
- Nếu \(\left[{}\begin{matrix}a+c=0\\b+c=0\end{matrix}\right.\) thì ko tính được giá trị cụ thể của M
Khi đó \(\left[{}\begin{matrix}M=\left(2018^{2015}+b^{2015}\right)\left(2018^{2017}+b^{2017}\right)\left(2018^{2019}+b^{2019}\right)\\M=\left(2018^{2015}+a^{2015}\right)\left(2018^{2017}+a^{2017}\right)\left(2018^{2019}+a^{2019}\right)\end{matrix}\right.\)
2017.2019 = (2018-1)(2018+1) = 20182 -1 => a =1
b= 20183 +1 (???)
B=\(x^{2019}-2019.x^{2018}+2019.x^{2017}-...+2019x-1\)
Ta có : 2019 = 1+2018=1+x ( vì x = 2018 )
Suy ra : \(x^{2019}-\left(x+1\right).x^{2018}+\left(x+1\right).x^{2017}-....+\left(x+1\right).x-1\)
=\(x^{2019}-\left(x^{2019}+x^{2018}\right)+\left(x^{2018}+x^{2017}\right)-...+\left(x^2+x\right)-1\)
= \(x^{2019}-x^{2019}-x^{2018}+x^{2018}+x^{2017}-....+x^2+x-1\)
= \(x-1\) mà x =2018
=> \(x-1=2018-1=2017\)
Vậy giá trị của biểu thức B = 2017
a,
\(2018^2-2017\cdot2019\\ =2018^2-\left(2018-1\right)\left(2018+1\right)\\ =2018^2-2018^2+1\\ =1\)
b, Đề khó nhìn bạn ạ, gõ Latex đi bạn! :)
a) 2018^2-2017.2019
= 2018^2 -(2018-1)(2018+1)
= 2018^2 -2018^2 -1
=-1