Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=1+2+2^2+2^3+...+2^{60}\)
=>\(2A=2+2^2+2^3+2^4+...+2^{61}\)
=>\(2A-A=\left(2+2^2+2^3+2^4+...+2^{61}\right)-\left(1+2+2^2+2^3+...+2^{60}\right)\)
=>\(A=2^{61}-1\)
b) \(B=1+3+3^2+3^3+...+3^{46}\)
=>\(3B=3+3^2+3^3+3^4+...+3^{47}\)
=>\(3B-B=\left(3+3^2+3^3+3^4+...+3^{47}\right)-\left(1+3+3^2+3^3+...+3^{46}\right)\)
=>\(2A=3^{47}-1\)
=>\(B=\frac{3^{47}-1}{2}\)
c) \(C=1+5^2+5^4+...+5^{200}\)
=>\(5^2C=5^2+5^4+5^6+...+5^{202}\)
=>\(25C=5^2+5^4+5^6+...+5^{202}\)
=>\(25C-C=\left(5^2+5^4+5^6+...+5^{202}\right)-\left(1+5^2+5^4+...+5^{200}\right)\)
=>\(24C=5^{202}-1\)
=>\(C=\frac{5^{202}-1}{24}\)
a) A = \(1+2+2^2+2^3+...+2^{60}\)
2A = \(2.\left(1+2+2^2+2^3+...+2^{60}\right)\)
2A = \(2+2^2+2^3+2^4+...+2^{61}\)
2A - A = \(\left(2+2^2+2^3+2^4+...+2^{61}\right)\)- \(\left(1+2+2^2+2^3+...+2^{60}\right)\)
A = \(2^{61}-1\)
b)B = \(1+3+3^2+3^3+...+3^{46}\)
3B = \(3.\left(1+3+3^2+3^3+...+3^{46}\right)\)
3B = \(3+3^2+3^3+3^4+...+3^{47}\)
3B - B = \(\left(3+3^2+3^3+3^4+...+3^{47}\right)\)- \(\left(1+3+3^2+3^3+...+3^{46}\right)\)
2B = \(3^{47}-1\)
B = \(\left(3^{47}-1\right):2\)
B:6 so sánh
a, \(7^{18}\) + \(7^{19}\) và \(7^{20}\)
ta có : \(7^{18}\) + \(7^{19}\) = \(7^{37}\)
mà \(7^{37}\) > \(7^{12}\)
\(\Rightarrow\) \(7^{18}\) + \(7^{19}\) > \(7^{20}\)
1: \(5P=5+5^2+5^3+...+5^{60}\)
\(\Leftrightarrow4P=5^{60}-1\)
hay \(P=\dfrac{5^{60}-1}{4}\)
2: \(P=\left(1+5\right)+5^2\left(1+5\right)+...+5^{58}\left(1+5\right)\)
\(=6\cdot\left(1+5^2+...+5^{58}\right)⋮6\)
\(P=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{57}\left(1+5+5^2\right)\)
\(=31\cdot\left(1+5^3+...+5^{57}\right)⋮31\)
a)
Ta có :A=275=27.27.27.27.27 Ta có :B=2433=243.243.243
=(3.3.3).(3.3.3)...(3.3.3)(có 5 nhóm) =(3.3.3.3.3).(3.3.3.3.3)...(3.3.3.3.3)(có 3 nhóm)
=3.3.3.3.3...3(15 thừa số 3) =3.3.3.3.3...3.3(có 15 thừa số 3)
=315 =315
Mà315=315
Nên 275=2433
=>A=B
b)Ta có:A=85=8.8.8.8.8 B=27
=(2.2.2).(2.2.2)...(2.2.2)(có 5 nhóm)
=2.2.2.2.2.2..2(có 15 thừ số 2)
Mà 215>27
Nên 85>27
=>A>B
c)(bạn tự tìm người giải ,mình bó)
d)A=1+2+22+23+24+..+21999 B=22000
2.A=2.(1+2+22+23+...+21999)
2.A=2+22+23+24+...+21999+22000
Ta có:2.A-A=(2+22+23+24+...+22000) - (1+2+22+23+...+21999)
A=22000-1
Mà 22000-1<22000
Nên A<B
Câu2:
A=4+42+43+44+...+460
4.A=4.(4+42+43+...+460)
4.A=42+43+44+...+460+461
4.A-4=(42+43+44+...+461)-(4+42+43+...+460)
A=\(\frac{4^{61}-4}{3}\)
bài 3 thì mình quên cách làm rồi để mai mình xem vở chỉ cho
Câu a mk ko hiểu gì nha xl bn nhìu
b)1-2+3-4+...+99-100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
=(-1) . 50
=(-50)
c) 5 + 52 + 53 + ...+ 599 + 5100
=(5+52)+(53+54)+....+(599+5100)
=30+52(5+52)+...+598(5+52)
=30.1+52.30+.....+598.30
=30(1+52+...+598) chia hết cho 6
=> 5A = 5 + 52 + ... + 52016
=> 5A - A = 52016 - 5
=> 4A = 52016 - 5
=> A = \(\frac{5^{2016}-5}{4}\)
A = 1 + 5 + 52 + ... + 560
5A = 5 + 52 + 53 + ... + 561
5A - A = ( 5 + 52 + 53 + ... + 561 ) - ( 1 + 5 + 52 + ... + 560 )
4A = 561 - 1
A = \(\frac{5^{61}-1}{4}\)
A=1+5+52+...+560
=> 5A = 5+52+...+560+561
=> 4A = 5A - A = 561 - 1
Vậy A = \(\frac{5^{61}-1}{4}\)