Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(54^{49}+54^{48}=54^{48}\left(54+1\right)=54.55=54.5.11\) chia hết cho 5 và 11
3.
+)Xét x=3k => (x+12)(x+20)(x+34)=(3k+12)(3x+20)(3k+34)=3(k+4)(3k+20)(3k+34) chia hết cho 3
+)Xét x=3k+1=>(x+12)(x+20)(x+34)=(3k+13)(3k+21)(3k+35)=(3k+13)3(k+7)(3k+35) chia hết cho 3
+)Xét x=3k+2=>(x+12)(x+20)(x+34)=(3k+14)(3k+22)(3k+36)=(3k+14)(3k+22)3(k+12) chia hết cho 3
Từ 3 trường hợp trên suy ra đpcm
a)\(12< 13;49>47\)
\(\Rightarrow\dfrac{12}{49}< \dfrac{13}{47}\)
b)\(\dfrac{64}{85}>\dfrac{43}{85}\Rightarrow\dfrac{64}{85}>\dfrac{1}{2}\)
\(\dfrac{17}{35}< \dfrac{17}{34}\Rightarrow\dfrac{17}{35}< \dfrac{1}{2}\)
\(\Rightarrow\dfrac{17}{35}< \dfrac{64}{85}\)
c) \(\dfrac{19}{31}>\dfrac{16}{31}\Rightarrow\dfrac{19}{31}>\dfrac{1}{2}\)
\(\dfrac{17}{35}< \dfrac{17}{34}\Rightarrow\dfrac{17}{35}< \dfrac{1}{2}\)
\(\Rightarrow\dfrac{17}{35}< \dfrac{19}{31}\)
d)
\(1-\dfrac{67}{77}=\dfrac{10}{77}\)
\(1-\dfrac{73}{83}=\dfrac{10}{83}\)
\(\dfrac{10}{77}>\dfrac{10}{83}\Rightarrow\dfrac{67}{77}< \dfrac{73}{83}\)
e)\(1-\dfrac{456}{461}=\dfrac{5}{461}\)
\(1-\dfrac{123}{128}=\dfrac{5}{128}\)
\(\dfrac{5}{461}< \dfrac{5}{128}\Rightarrow\dfrac{456}{461}>\dfrac{123}{128}\)
\(a,\dfrac{12}{49}< \dfrac{12}{47}< \dfrac{13}{47}\Rightarrow\dfrac{12}{49}< \dfrac{12}{47}\)
b, Ta có: \(\dfrac{17}{35}=\dfrac{51}{105}\)
\(\dfrac{64}{85}>\dfrac{64}{105}>\dfrac{51}{105}\Rightarrow\dfrac{64}{85}>\dfrac{51}{105}\) hay \(\dfrac{64}{85}>\dfrac{17}{85}\)
c,\(\dfrac{19}{31}>\dfrac{17}{31}>\dfrac{17}{35}\Rightarrow\dfrac{19}{31}>\dfrac{17}{35}\)
d, \(\dfrac{67}{77}+\dfrac{10}{77}=1\)
\(\dfrac{73}{83}+\dfrac{10}{83}=1\)
\(\dfrac{10}{77}>\dfrac{10}{83}\Rightarrow\dfrac{67}{77}< \dfrac{73}{83}\)
e, \(\dfrac{456}{461}+\dfrac{5}{461}=1\)
\(\dfrac{123}{128}+\dfrac{5}{128}=1\)
\(\dfrac{5}{461}< \dfrac{5}{128}\Rightarrow\dfrac{456}{461}>\dfrac{123}{128}\)
A = \(\dfrac{17}{15}.\dfrac{-31}{125}.\dfrac{1}{2}.\dfrac{10}{17}.\dfrac{-1}{8}\)
= \(\dfrac{17.\left(-31\right).1.10.\left(-1\right)}{15.125.2.17.8}\)
= \(\dfrac{17.\left[\left(-31\right).\left(-1\right)\right].1.2.5}{5.3.125.17.4.2}\)
= \(\dfrac{31.1}{3.125.4}\)
= \(\dfrac{31}{1500}\)
B = \(\left(\dfrac{11}{4}.\dfrac{-5}{9}-\dfrac{4}{9}.\dfrac{11}{4}\right).\dfrac{8}{33}\)
= \(\left[\dfrac{11}{4}.\left(\dfrac{-5}{9}-\dfrac{4}{9}\right)\right].\dfrac{8}{33}\)
= \(\left(\dfrac{11}{4}.\dfrac{-9}{9}\right).\dfrac{8}{33}\)
= \(\left[\dfrac{11}{4}.\left(-1\right)\right].\dfrac{4.2}{\left(-11\right).\left(-3\right)}\)
= \(\dfrac{-11}{4}.\dfrac{4.2}{\left(-11\right).\left(-3\right)}\)
= \(\dfrac{\left(-11\right).4.2}{4.\left(-11\right)\left(-3\right)}\)
= \(\dfrac{2}{-3}\)
Ok nhá!
5\(\dfrac{8}{17}\):x + (-\(\dfrac{1}{17}\)) : x + 3\(\dfrac{1}{17}\) : 17\(\dfrac{1}{3}\)= \(\dfrac{4}{17}\)
\(\dfrac{93}{17}\).\(\dfrac{1}{x}\) + (-\(\dfrac{1}{17}\)) .\(\dfrac{1}{x}\) +\(\dfrac{3}{17}\)= \(\dfrac{4}{17}\)
\(\dfrac{1}{x}\).\(\dfrac{92}{17}\)=\(\dfrac{1}{17}\)
\(\dfrac{1}{1.4}\)+\(\dfrac{1}{4.7}\)+\(\dfrac{1}{7.10}\)+...+\(\dfrac{1}{x.\left(x+3\right)}\)=\(\dfrac{6}{19}\)
2)
S = \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{43.46}\)
S = 3 . (\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{43.46}\))
S = 1 . (\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{43.46}\))
S = 1 . (\(1-\dfrac{1}{4}+...+\dfrac{1}{43}-\dfrac{1}{46}\))
S = 1 . (\(1-\dfrac{1}{46}\))
S = 1 . \(\dfrac{45}{46}\)
S = \(\dfrac{45}{46}\)
=> \(\dfrac{45}{46}\) < 1
\(A=\dfrac{-3}{5}.\dfrac{3}{13}+\dfrac{-3}{5}.\dfrac{10}{13}+5\)
\(A=\dfrac{-3}{5}\left(\dfrac{3}{13}+\dfrac{10}{13}\right)+5\)
\(A=\dfrac{-3}{5}.1+5\)
\(A=\dfrac{-3}{5}+5\)
\(A=\dfrac{22}{5}\)
a.\(\dfrac{19\left(3-4+1\right)}{1995.1996.1997}\)=\(\dfrac{19.0}{1995.1996.1997}\)=0
\(A=\dfrac{19.3-19.4+19}{1995.1996.1997}=\dfrac{19.3-19.4+19.1}{1995.1996.1997}=\dfrac{19.0}{1995.1996.1997}=\dfrac{0}{1995.1996.1997}=0\)b) sửa đề:
\(B=\dfrac{48.48-17}{47.48+31}=\dfrac{48.\left(47+1\right)-17}{47.48+31}=\dfrac{48.47+48-17}{47.48+31}=\dfrac{47.48+31}{47.48+31}=1\)