Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
14 : ( 4\(\frac{2}{3}\)- 1\(\frac{5}{9}\)) + 14 : ( \(\frac{2}{3}\)+ \(\frac{8}{9}\))
= 14 : ( \(\frac{14}{3}\)- \(\frac{14}{9}\)) + 14 : ( \(\frac{6}{9}\) + \(\frac{8}{9}\))
= 14 : ( 14 - \(\frac{14}{9}\)) + 14 : \(\frac{14}{9}\)
= 14 : \(\frac{112}{9}\)+ 14 : \(\frac{14}{9}\)
= \(\frac{9}{8}\)+ 9
= \(\frac{81}{8}\)
a: =6/12*7/14*8/16*9/18=1/2*1/2*1/2*1/2=1/16
b: =4/12*15/3*9/25*24/8
=1/3*3*5*9/25=9/5
1+1+2+2+3+3+4+4+5+5+6+6+7+7+8+9+8+9+10+12+13+14+15+16+17+18+19+20+30+1000000=10000274
\(\frac{1}{3}+\frac{3}{7}+\frac{5}{3}+\frac{8}{14}\)
\(=\left(\frac{1}{3}+\frac{5}{3}\right)+\left(\frac{3}{7}+\frac{8}{14}\right)\)
\(=\frac{6}{3}+\left(\frac{6}{14}+\frac{8}{14}\right)\)
\(=2+\frac{14}{14}\)
\(=2+1\)
\(=3\)
\(\frac{5}{6}+\frac{4}{15}+\frac{6}{18}+\frac{3}{45}\)
\(=\left(\frac{5}{6}+\frac{6}{18}\right)+\left(\frac{4}{15}+\frac{3}{45}\right)\)
\(=\left(\frac{5}{6}+\frac{2}{6}\right)+\left(\frac{4}{15}+\frac{1}{15}\right)\)
\(=\frac{7}{6}+\frac{5}{15}\)
\(=\frac{7}{6}+\frac{1}{3}\)
\(=\frac{7}{6}+\frac{2}{6}\)
\(=\frac{9}{6}\)
\(=\frac{3}{2}\)
~ Ủng hộ nhé
\(9\times17+83\times9\)
\(=\left(83+17\right)\times9\)
\(=100\times9\)
\(=900\)
\(4\frac{1}{7}+7+8\frac{6}{7}\)
\(=\left(4\frac{1}{7}+8\frac{6}{7}\right)+7\)
\(=\left(8+4\right)+\left(\frac{1}{7}+\frac{6}{7}\right)+7\)
\(=12+\frac{7}{7}+7\)
\(=12+1+7\)
\(=20\)
~ Ủng hộ nhé
\(\frac{14}{5}+\frac{9}{13}+\frac{17}{13}-\frac{8}{9}+\frac{17}{9}-\frac{4}{5}\)
\(=\left(\frac{14}{5}-\frac{4}{5}\right)+\left(\frac{9}{13}+\frac{17}{13}\right)+\left(\frac{17}{9}-\frac{8}{9}\right)\)
\(=2+2+1\)
\(=5\)
\(\frac{14}{5}+\frac{9}{13}+\frac{17}{13}-\frac{8}{9}+\frac{17}{9}-\frac{4}{5}\)
\(=\left(\frac{14}{5}-\frac{4}{5}\right)+\left(\frac{9}{13}+\frac{17}{13}\right)-\left(\frac{8}{9}-\frac{17}{9}\right)\)
\(=\frac{10}{5}+\frac{26}{13}-\left(-1\right)\)
\(=2+2+1\)
\(=5\)
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (\(\dfrac{2}{2}\) + \(\dfrac{3}{3}\) + \(\dfrac{4}{4}\) + \(\dfrac{5}{5}\)+ \(\dfrac{6}{6}+\dfrac{7}{7}+\dfrac{8}{8}\) + \(\dfrac{10}{10}\))
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (1 + 1 +1 + 1+ 1+ 1+ 1 +1)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x 1 x 8
= \(\dfrac{1}{2}\) + \(\)\(\dfrac{1}{2}\) x 8
= \(\dfrac{1}{2}\) + 4
= \(\dfrac{9}{2}\)
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + 8
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{9}{18}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)
= \(\dfrac{1}{2}\) x 10
= 5
Đặt biểu thức trên là A
A=(1-3)+(2-4)+(5-7)+(6-8)+.....+(297-299)+(298-300)+301+302
A=301+302-(3-1)-(4-2)-(7-5)-(8-6)-......-(299-297)-(300-298)
------------------------------------------------------------------
có 150 số hạng
A=301+302-(2+2+2+2+..........+2)
------------------------------
50 số hạng
A=301+302-2x150=303
\(\frac{4}{9}+\frac{3}{8}+\frac{14}{9}=\left(\frac{4}{9}+\frac{14}{9}\right)+\frac{3}{8}=2+\frac{3}{8}=2\frac{3}{8}\)
4/9 + 3/8 + 14/9
= ( 4/9 + 14/9 ) + 3/8
= 18/9 + 3/8
= 2 + 3/8
= 16/8 + 3/8
= 19/8