Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+2^2+...+2^{100}\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{101}\)
\(\Rightarrow S=2^{101}-1\)
\(\Rightarrow S=2^{101}-1< 2^{122}\)
S = 1 + 2 + 2^2 +......+ 2^100
2S = 2 x (1 + 2 + 2^2 +.......+ 2^100)
2S = 2 + 2^2 + 2^3 +....+ 2^100 + 2^101
2S - S = (2 + 2^2 + 2^3 +.....+2^100 + 2^101)-(1+2+2^2+.....+2^100)
S = 2^101 - 1
=> 2^101-1 < 2^122
a.
(-2)4.17.(-3)0.(-5)6.(-12n)
=16.17.1.15625.-1
=(16.15625).[1.(-1)].17
=250000.(-1).17
=4250000
b.3(2x2-7)=33
2x2-7 =33:3
2x2-7 =11
2x2 =11+7
2x2 =18
x2 =18:2
x2 =9
x2 =\(\left(\pm3^2\right)\)
\(\Rightarrow\) TH1: x2 =32 TH2: x2 =(-3)2
\(\Rightarrow\) x =3 \(\Rightarrow\)x =-3
Vậy x\(\in\left\{3;-3\right\}\)
\(S=1+2+2^2+...+2^{99}\)
\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(S=3+2^2.3+...+2^{98}.3\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
Bạn chú ý đến thừa số cuối cùng
24=16
42=16
Do đó 24-42=0
Vậy cả tích bằng 0
Ta có :
\(A=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=30+2^4\times30+2^8\times30+..2^{56}\times30\)
Vậy A chia hết cho 30 nên A cũng chia hết cho 15
hay nói cách khác A là Bội của 15
a, -31.52 + (-26).(-159)
=-31.2.26 + 26.159
= -62.26 + 26.159
= 26(-62 + 159)
= 26.97
= 2522
b, S=1-2+22-23+...+21000
2S=2-22+23-24+...+21001
S+2S=(1-2+22-23+...+21000)+(2-22+23-24+...+21001)
3S=1+21001
S=\(\frac{1+2^{1001}}{3}\)