Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho \(M=1+3+3^2+...+3^{99}+3^{100}\)
=>\(M=1+\left(3+3^2+3^3\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=>M=1+3\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=>M=1+13\left(3+...+3^{98}\right)\)
Mà \(13\left(3+3^{98}\right)⋮13\)
=> M chia cho 13 dư 1
+) \(M=1+3+3^2+...+3^{99}+3^{100}\)
\(\Leftrightarrow M=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(\Leftrightarrow M=\left(1+3+9\right)+3^3\left(1+3+9\right)+....+3^{98}\left(1+3+9\right)\)
\(\Leftrightarrow M=13+3^3\cdot14+....+3^{98}\cdot14\)
\(\Leftrightarrow M=13\left(1+3^3+....+3^{98}\right)\)
=> M chia 13 dư 0
xem lại đề đi mk nghĩ là 121 đấy
cả cái tổng đó phải chia hết cho 121
A)\(\left|x+1\right|+\left|x+1\right|=2\)
\(\Rightarrow2.\left|x+1\right|=2\)
\(\Rightarrow\left|x+1\right|=2:2\)
\(\Rightarrow\left|x+1\right|=1\)
\(\Rightarrow x+1=1\) hoặc \(x+1=-1\)
1)x+1=1 2)x+1=-1
\(\Rightarrow x=1-1\) \(\Rightarrow x=-1-1\)
\(\Rightarrow x=0\) \(\Rightarrow x=-2\)
Vậy \(x\in\left\{0;-2\right\}\)
b) x-[-x+(x+3)]-[(x+3)-(x-2)]=0
\(\Rightarrow x-\left[-x+x+3\right]-\left[x+3-x+2\right]=0\)
\(\Rightarrow x-3-5=0\)
\(\Rightarrow x=0+3+5\)
\(\Rightarrow x=8\)
Vậy x=8
c)\(\left(3x+1\right)^2+\left|y-5\right|=1\)
+)Giả sử 3x+1 là số âm
\(\Rightarrow\left(3x+1\right)^2\)là số dương(1)
+)Lại giả sử 3x+1 là số dương
\(\Rightarrow\left(3x+1\right)^2\)là số dương(2)
+)Từ (1) và (2)
\(\Rightarrow\left(3x+1\right)^2\)nguyên dương với mọi x
+)Ta có:\(\left(3x+1\right)^2\ge0;\left|y-5\right|\ge0\)
\(\Rightarrow\left(3x+1\right)^2=1;\left|y-5\right|=0\)
\(\Rightarrow x=0;y=5\)
+)Ta lại có:\(\left(3x+1\right)^2\ge0;\left|y-5\right|\ge0\)
\(\Rightarrow\left(3x+1\right)^2=0;\left|y-5\right|=1\)
\(\Rightarrow x=\frac{-1}{3};y\in\left\{6;4\right\}\)
Mà \(\left(x,y\right)\in Z\)
\(\Rightarrow x=0;y=5\)
Đề bạn thiếu x,y thuộc Z đó
Chúc bn học tốt
Từ gt suy ra: -4C= 4101+...+44+43-42
=> -4C+C= 4101-42-42+4=4101-28 => C=\(\frac{28-4^{101}}{3}\)
A=(1.1-2.2)+(3.3-4.4)+...+(99.99-100.100)+101.101
A= (-3)+(-7)+...+(-199)+101.101
A=-[(199+3).50:2]+101.101
A= -5050+101.101
A=101.(-50)+101.101=(-50.101).101=510050
\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)
\(=1+2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(=3+2^2.\left(1+2+4\right)+...+2^{98}.\left(1+2+4\right)\)
\(=3+7.\left(2^2+2^5+...+2^{98}\right)\)chia 7 dư 3
\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)
\(S=\left(2^0+2^1+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{98}+2^{99}+2^{100}\right)\)
\(S=\left(1+2+4\right)+2^3\left(1+2+4\right)+.....+2^{98}\left(1+2+4\right)\)
\(S=7+2^3\cdot7+....+2^{98}\cdot7\)
\(S=7\left(1+2^3+...+2^{98}\right)\)
=> S chia 7 dư 0 hay S chia hết cho 7
\(n^2+4⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Leftrightarrow\hept{\begin{cases}n^2+4⋮n-1\\n^2-n⋮n-1\end{cases}}\)
\(\Leftrightarrow n+4⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Leftrightarrow5⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(5\right)\)
\(\Leftrightarrow\orbr{\begin{cases}n-1=1\\n-1=5\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}n=0\\n=6\end{cases}}\)