K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2018

a) \(3x^2-11x+8=0\)

(\(a=3\) ; \(b=-11\) ; \(c=8\) )

Ta có: \(a+b+c=3-1+8=0\)

\(\Rightarrow\) Pt \(3x^2-11x+8=0\) có 2 nghiệm:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{8}{3}\approx2,6\)

b) \(5x^2+24x+19=0\)

(\(a=5\) ; \(b=24\) ; \(c=19\) )

Ta có: \(a-b+c=5-24+19=0\)

\(\Rightarrow\) Pt \(5x^2+24x+19=0\) có 2 nghiệm:

\(x_1=-1;x_2=-\dfrac{c}{a}=-\dfrac{19}{5}\approx-3,8\)

c) \(x^2-\left(m+5\right)x+m+4=0\)

(\(a=1\) ; \(b=-\left(m+5\right)\) ; \(c=m+4\) )

Ta có: \(a+b+c=1-m-5+m+4=0\)

\(\Rightarrow\) Pt \(x^2-\left(m+5\right)x+m+4=0\) có 2 nghiệm:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{m+4}{1}=m+4\)

9 tháng 3 2018

Áp dụng: a+b+c = 0 ⇒ x1 = 1; x2 = \(\dfrac{c}{a}\)
a-b+c = 0 ⇒ x1 = -1; x2 = \(\dfrac{-c}{a}\)
a) Có : a+b+c = 3 - 11 + 8 = 0 ⇒ \(\left\{{}\begin{matrix}x_1=1\\x_2=\dfrac{c}{a}=\dfrac{8}{3}\end{matrix}\right.\)

b) a-b+c = 5 - 24 + 19 = 0 ⇒ \(\left\{{}\begin{matrix}x_1=-1\\x_2=\dfrac{-c}{a}=\dfrac{-19}{5}\end{matrix}\right.\)

c) a+b+c = 1-m-5+m+4 = 0 ⇒\(\left\{{}\begin{matrix}x_1=1\\x_2=\dfrac{c}{a}=m+4\end{matrix}\right.\)

d) a-b+c= m-2m-1+m+1 = 0 ⇒\(\left\{{}\begin{matrix}x_1=-1\\x_2=\dfrac{-c}{a}=\dfrac{-m-1}{m}\end{matrix}\right.\)

NV
1 tháng 4 2020

c/ \(\Delta'=m^2-5\left(-2m+15\right)=0\)

\(\Leftrightarrow m^2+10m-75=0\)

\(\Rightarrow\left[{}\begin{matrix}m=5\\m=-15\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}m\ne0\\\Delta'=4\left(m-1\right)^2+8m=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\4m^2+4=0\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn điều kiện đề bài

NV
1 tháng 4 2020

Để các pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)

a/ \(\left\{{}\begin{matrix}m\ne0\\\left(m-1\right)^2-2m=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m^2-4m+1=0\end{matrix}\right.\) \(\Rightarrow m=2\pm\sqrt{3}\)

b/ \(\Delta=\left(m+1\right)^2-48=0\)

\(\Leftrightarrow\left(m+1\right)^2=48\)

\(\Leftrightarrow\left[{}\begin{matrix}m+1=4\sqrt{3}\\m+1=-4\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow m=-1\pm4\sqrt{3}\)

1 tháng 4 2020

a,\(x^2-\left(m+1\right)x+m=0\)

xét \(\Delta=\left\{-\left(m+1\right)\right\}^2-4\cdot1\cdot m=m^2+2m+1-4m=m^2-2m+1=\left(m-1\right)^2\ge0\forall m\)

vậy ...

b,\(x^2-2\left(m+1\right)x+2m+1=0\)

xét \(\Delta=\left\{-2\left(m+1\right)\right\}^2-4\cdot1\cdot\left(2m+1\right)=4m^2+8m+4-8m-4=4m^2\ge0\forall m\)

vậy ...

c, \(x^2+\left(m+3\right)x+m+1=0\)

xét \(\Delta=\left(m+3\right)^2-4\cdot1\cdot\left(m+1\right)=m^2+6m+9-4m-4=m^2-2m+5=m^2-2m+1+4=\left(m-1\right)^2+4>0\forall m\)vậy ...

d,\(x^2+3x+1-m^2=0\)

xét \(\Delta=3^2-4\cdot1\cdot\left(1-m^2\right)=9-4+4m^2=4m^2+5>0\forall m\)vậy ...

6 tháng 5 2020

Chà em \"Trống\" kinh thế :)))?

\n
4 tháng 4 2017

a) Phương trình 1,5x2 – 1,6x + 0,1 = 0

Có a + b + c = 1,5 – 1,6 + 0,1 = 0 nên x1 = 1; x2 = \(\dfrac{0,1}{15}\)

c) \(\left(2-\sqrt{3}\right)x^2+2\sqrt{3x}-\left(2+\sqrt{3}\right)=0\)

\(a+b+c=2-\sqrt{3}+2\sqrt{3}-\left(2+\sqrt{3}\right)=0\)

Nên x1 = 1, x2 = \(\dfrac{-\left(2+\sqrt{3}\right)}{2-\sqrt{3}}\) = -(2 + \(\sqrt{3}\))2 = -7 - 4\(\sqrt{3}\)

d) (m – 1)x2 – (2m + 3)x + m + 4 = 0

Có a + b + c = m – 1 – (2m + 3) + m + 4 = 0

Nên x1 = 1, x2 = \(\dfrac{m+4}{m-1}\)

4 tháng 4 2017

a) Phương trình 1,5x2 – 1,6x + 0,1 = 0

Có a + b + c = 1,5 – 1,6 + 0,1 = 0 nên x1 = 1; x2 =

b) Phương trình √3x2 – (1 - √3)x – 1 = 0

Có a – b + c = √3 + (1 - √3) + (-1) = 0 nên x1 = -1, x2 = =

c) (2 - √3)x2 + 2√3x – (2 + √3) = 0

Có a + b + c = 2 - √3 + 2√3 – (2 + √3) = 0

Nên x1 = 1, x2 = = -(2 + √3)2 = -7 - 4√3

d) (m – 1)x2 – (2m + 3)x + m + 4 = 0

Có a + b + c = m – 1 – (2m + 3) + m + 4 = 0

Nên x1 = 1, x2 =

Bài 2: 

a: \(\Leftrightarrow\left(x^2-3x+2\right)\left(x^2-3x+3\right)=0\)

=>x^2-3x+2=0

=>x=2 hoặc x=1

b: \(\Leftrightarrow\left(\left|x\right|\right)^2-\left|x\right|+m=0\)

Để phương trình có nghiệm thì \(\text{Δ}>=0\)

=>1-4m>=0

=>m<=1/4

Để phương trình vô nghiệm thì Δ<0

=>m>1/4

c: TH1: m=1

=>-2x+2=0

=>x=1

TH2: m<>1

\(\text{Δ}=\left(-2\right)^2-4\left(1-m\right)\cdot2m\)

\(=4+8m\left(m-1\right)\)

\(=8m^2-8m+4\)

Để phương trình có nghiệm thì Δ>=0

=>\(m\in R\)