Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{59.61}=2.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)=2\left(\frac{1}{5}-\frac{1}{61}\right)=2.\frac{56}{305}=\frac{112}{305}\)
P/S : Dấu "." là dấu "x"
Bài làm:
Ta có: \(\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{59.61}\)
\(=2\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{61}\right)\)
\(=2.\frac{56}{305}=\frac{112}{305}\)
A = \(\dfrac{4}{1\times3}\) - \(\dfrac{8}{3\times5}\) + \(\dfrac{12}{5\times7}\) - \(\dfrac{16}{7\times9}\) + \(\dfrac{20}{9\times11}\) - \(\dfrac{24}{11\times13}\)
A = ( \(\dfrac{1}{1}+\dfrac{1}{3}\)) - ( \(\dfrac{1}{3}\) + \(\dfrac{1}{5}\)) + (\(\dfrac{1}{5}\)+ \(\dfrac{1}{7}\)) - ( \(\dfrac{1}{7}\) + \(\dfrac{1}{9}\)) +( \(\dfrac{1}{9}\)+ \(\dfrac{1}{11}\)) - (\(\dfrac{1}{11}\)+\(\dfrac{1}{13}\))
A = \(\dfrac{1}{1}+\dfrac{1}{3}\) - \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{7}\) - \(\dfrac{1}{7}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{11}\) - \(\dfrac{1}{11}\) - \(\dfrac{1}{13}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{13}\)
A = \(\dfrac{12}{13}\)
\(S.2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(S.2=\frac{1}{1}-\frac{1}{11}\)
\(S.2=\frac{10}{11}\)
\(S=\frac{10}{11}:2\)
\(S=\frac{5}{11}\)
Ta có :
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\)
= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
= \(\frac{1}{1}-\frac{1}{11}\)
= \(\frac{10}{11}\)
\(=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+..+\frac{1}{9.11}\right)\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...-\frac{1}{11}\right)\)
\(=2.\left(1-\frac{1}{11}\right)\)
\(=2.\left(\frac{11}{11}-\frac{1}{11}\right)\)
\(=2.\frac{10}{11}\)
\(=\frac{20}{11}\)
\(.A=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{2013}\right)\)
\(A=\frac{1004}{10065}\)
<a class="ptip tipped" data-name="Nguyễn Ngọc Sáng" data-image="http://olm.vn/images/avt/avt424601_60by60.jpg" href="/thanhvien/nguyenngocsang6a" data-uid="125744" data-hasqtip="true" aria-describedby="qtip-2"> Sáng Nguyễn </a>
A=1/5x7+11/7x9+1/9x11+....+1/2011x2013
2xA=2x(1/5x7+1/7x9+1/9x11+...+1/2011x2013
2xA=2/5x7+2/7x9+2/9x11+...+2/2011x2013
2xA=1/5-1/7+1/7-1/9+1/9-1/11+...+1/2011-1/2013
2xA=1/5-1/2013
2xA=2013/10045-5/10045
2xA=2008/10045
A=2008/10045:2
A=2008/10045x1/2
A=1004/10045
\(\frac{1}{1x2} +(\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9} +\frac{2}{9x11})\)
\(=\frac{1}{1x2} + (\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11})\)
\(=\frac{1}{1x2}+(\frac{1}{3}-\frac{1}{11})\)
\(=\frac{1}{1x2} +\frac{10}{33}\)
\(=\frac{1}{2} + \frac{10}{33} = \frac{33}{66}+\frac{20}{66}\)
\(=\frac{53}{66}\)
\(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+\frac{1}{9x11}+\frac{1}{11x13}\)
\(=\frac{1}{2}x\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{1}{2}x\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=\frac{1}{2}x\frac{10}{39}\)
\(=\frac{5}{39}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
\(=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=\frac{1}{2}\cdot\frac{10}{39}=\frac{5}{39}\)
Ta có : \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{11.13}\)
\(=\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+......+\frac{1}{11}-\frac{1}{13}\)
\(=\frac{1}{3}-\frac{1}{13}\)
\(=\frac{10}{39}\)
\(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{11\times13}\)
\(=\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{11\times13}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\)
\(=\frac{1}{3}-\frac{1}{13}=\frac{10}{39}\)
4/5x7 + 4/7x9 + 4/9x11 + ... + 4/50x61
= 2x(2/5x7 + 2/7x9 + 2/9x11 + ... + 2/59x61)
= 2x [(1/5-1/7)+(1/7-1/9)+(1/9-1/11)+...+(1/59-1/61)]
= 2x(1/5-1/61)
= 2x 56/305
= 112/305