Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
Bài 1: a,
\(A=\left|x-1\right|+3\)
Vì \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow\left|x-1\right|+3\ge3\forall x\)
Dấu = xảy ra khi x - 1 = 0 \(\Leftrightarrow x=1\)
Vậy GTNN của A = 3 khi x = 1
\(B=\left|x-7\right|-4\)
Vì \(\left|x-7\right|\ge0\forall x\)
\(\Rightarrow\left|x-7\right|-4\ge-4\forall x\)
Dấu = xảy ra khi x - 7 = 0 \(\Leftrightarrow x=7\)
Vậy GTNN của B = -4 khi x = 7
b, \(C=-\left|x-3\right|+2\)
Vì \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow-\left|x-3\right|\le0\forall x\)
\(\Rightarrow-\left|x-3\right|+2\le2\forall x\)
Dấu = xảy ra khi x - 3 = 0 \(\Leftrightarrow x=3\)
Vậy GTLN của C = 2 khi x = 3
Vì | x -3 | > hoặc = 0
Suy ra : |x-3|+50 >hoặc =50
Vì A nhỏ nhất suy ra | x-3 | +50 =50
Suy ra x-3 =0
Suy ra x=3
Vậy GTNN của A = 50 khi x=3
tương tự baì đẳng trên mình vừa làm đấy
|A| <= 0 với mọi A
thì -|A| <= 0 vứi mọi A
tương tự với bình phương một số
Ta có \(\left(x+1\right)^{2022}\ge0\forall x\Rightarrow A=2020-\left(x+1\right)^{2022}\le2020\forall x\)
Dấu "=" xảy ra <=> x + 1 = 0
=> x = -1
Vậy GTLN của A là 2020 khi x = -1
b) Để C đạt GTLN
=> \(\frac{5}{\left(x+3\right)^2}\)lớn nhất
=> (x - 3)2 nhỏ nhất
=> (x - 3)2 = 1
=> \(\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
Nếu x = 4 => C = 6
Vậy GTLN của C là 6 khi x = 4 hoặc x = 2
A = 2020 - ( x + 1 )2022
-( x + 1 )2022 ≤ 0 ∀ x => 2020 - ( x + 1 )2 ≤ 2020
Đẳng thức xảy ra <=> x + 1 = 0 => x = -1
=> MaxA = 2020 <=> x = -1
C = \(\frac{5}{\left(x-3\right)^2+1\left(^∗\right)}\)
Để C đạt GTLN => (*) = ( x - 3 )2 + 1 đạt GTNN
( x - 3 )2 ≥ 0 ∀ x => ( x - 3 )2 + 1 ≥ 1
=> Min(*) = 1 <=> x - 3 = 0 => x = 3
=> MaxC = 5 <=> x = 3