K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

Vì | x -3 | > hoặc = 0

Suy ra : |x-3|+50 >hoặc =50

Vì A nhỏ nhất suy ra | x-3 | +50 =50

Suy ra x-3 =0

Suy ra x=3

Vậy GTNN của A = 50 khi x=3

5 tháng 11 2017

GTNN là gì z.tui ko  hiểu nên ko giải được!

GTNN là giá trị nhỏ nhất

6 tháng 1 2016

A=10 

B=-7

C=-5

D=-3

E=15

F=3

6 tháng 1 2016

bạn giải chi tiết ra giúp mình đc ko?

 

29 tháng 1 2017

Bài 1:

Ta có: \(-\left|2x+6\right|\le0\)

\(\Rightarrow9-\left|2x+6\right|\le9\)

\(\Rightarrow5-\left(9-\left|2x+6\right|\right)\le5\)

Dấu "=" xảy ra <=> 2x + 6 = 9 <=> x = \(\frac{3}{2}\)

Vậy GTNN của A là 5 khi x = \(\frac{3}{2}\)

Bài 2:

Ta có: \(\left|2x+6\right|\ge0\)

\(\Rightarrow\left|2x+6\right|-3\ge-3\)

\(\Rightarrow-5-\left(\left|2x+6\right|-3\right)\ge-5\)

Dấu "=" xảy ra <=> 2x + 6 = 3 <=> x = \(-\frac{3}{2}\)

Vậy GTLN của A là -5 khi x = \(-\frac{3}{2}\)

9 tháng 9 2019

a) \(2\left(x+5\right)-3x=2x+1\)

\(\left(x+2\right)+\left(x-2x+1\right)\ge0\)

\(=\left(x+2\right)+\left(x-2+1\right)-3\ge-1\)

b)

  Bài này ta sử dụng kĩ thuật tham số hóa.

  Giả sử A đạt GTNN tại a= x, b= y, c= z khi đó x + y  +z = 3.            (1)

  Áp dụng bất đẳng thức Cauchy cho 2 số dương ta có:

       a2+x2≥2axa2+x2≥2ax.          4a2≥8ax−4x24a2≥8ax−4x2.

       b2+y2≥2byb2+y2≥2by. =>    6b2≥12by−6y26b2≥12by−6y2.

       c2+z2≥2zc2+z2≥2z.           3c2≥6cz−3z23c2≥6cz−3z2.

 => A≥(8ax+12by+6cz)−(4x+6y+3z)A≥(8ax+12by+6cz)−(4x+6y+3z).

  Để sử dụng được GT thì 8x = 12y = 6z.                                          (2)

  Từ (1); (2) ta tìm ra được x, y, z=>...

c,d chịu 

\(x=-1\)

19 tháng 8 2017

Ai giải đúng 4 câu mik cho 2 cái nha

19 tháng 8 2017

cần chi tiết k

6 tháng 1 2016

tương tự baì đẳng trên mình vừa làm đấy

|A| <= 0 với mọi A

thì -|A| <= 0 vứi mọi A

tương tự với bình phương một số