K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

a)

Ta có :

\(x+y=3\)

\(x^2+y^2=5\Leftrightarrow\left(x+y\right)^2-2xy=5\Leftrightarrow9-2xy=5\Leftrightarrow2xy=4\Rightarrow xy=2\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3.\left(5-2\right)=9\)

b)

Ta có :

\(x-y=5\)

\(x^2+y^2=15\Leftrightarrow\left(x-y\right)^2+2xy=15\Leftrightarrow25+2xy=15\Rightarrow xy=-5\)

=> \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=\left(5\right)\left(15+-5\right)=50\)

15 tháng 8 2015

3A=9x2+18xy+9y2-6x-6y-300

3A=(3x+3y)2-2(3x+3y)+1-301

3A=[3(x+y)-1] -301 

thay x+y vào là xong nhé!

15 tháng 8 2015

a)A=3(x2+2xy+y2)-2(x+y)-100=3(x+y)2-2.5-100=3.52-110=-35

b)B=x3+3x2y+3xy2+y3-2(x2+2xy+y2)+3(x+y)+10=(x+y)3-2(x+y)2+3.5+10=53-2.52+25=100

(l ike nha)

9 tháng 8 2017

Bài 8: Cho a+b= 1 nha ( mk thiếu đề)

9 tháng 8 2017

Bài 1:

Theo bài ra ta có:

\(\left(x-y\right)^2=x^2-2xy+y^2\)

\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)

\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)

\(=25-10y+y^2+25-10x+x^2-4\)

\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)

\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)

\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)

\(=50-50+5^2-4-4\)

\(=25-8=17\)

Vậy giá trị của \(\left(x-y\right)^2\)là 17

15 tháng 8 2015

B=[x^3+3xy(x+y)+y^3]-2(x^2+2xy+y^2)+3(x+y)+10

B=(x+y)^3-2(x+y)^2+3(x+y)+10

Thay vào

19 tháng 10 2019

a) Ta có:\(\left(x+y\right)^2=5^2\)(Vì x + y = 5)

\(\Leftrightarrow x^2+2xy+y^2=25\)

  \(\Leftrightarrow x^2+2.4+y^2=25\)

\(\Leftrightarrow x^2+8+y^2=25\)

\(\Leftrightarrow x^2+y^2=17\)

b) \(\left(x+y\right)^2=3^2\)(Vì x + y = 3)

\(\Leftrightarrow x^2+2xy+y^2=9\)

\(\Leftrightarrow2xy+5=9\)

\(\Leftrightarrow2xy=4\)

\(\Leftrightarrow xy=2\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=3\left(5-2\right)=9\)

19 tháng 10 2019

a) ta có:(x+y)2=x2+2xy+y2=>x2+y2=(x+y)2-2xy

thay x+y=5;xy=4 vào biểu thức ta có:

52-2×4=25-8=17