Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) (x+y)2=92=81
=> x2+2xy+y2=81
=> x2+2.14+y2=81
=> x2+y2=53
=> x2-2xy+y2=81-2.14=25
=> (x-y)2=25
=> x-y=5 hoặc x-y=-5
b) Câu a đã tính được x2+y2=53
c) Ta có: x3+y3=(x+y)(x2-xy+y2)=9(53-14)=9.39=351
Bài 2:
Ta có: \(x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1\)
Mà x+y=1
\(\Rightarrow1^2-4.1+1=-2\)
Bài 3:
Ta có: (x+y)3=x3+3x2y+3xy2+y3
= x3+y3+3xy(x+y)
Mà x+y=1 => (x+y)3=x3+y3+3xy=13=1
Bài 4:
Ta có: \(\left(x+y\right)^2=4^2=16\)
\(\Rightarrow x^2+2xy+y^2=16\Rightarrow10+2xy=16\)
\(\Rightarrow2xy=6\Rightarrow xy=3\)
Lại có: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=4.\left(10-3\right)\)
\(=4.7=28\)
Bài 5:
Ta có: \(x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=1\left(x^2+xy+y^2\right)-3xy=x^2+xy+y^2-3xy\)
\(=x^2-2xy+y^2=\left(x-y\right)^2=1\)
Mấy bài này đầu hè làm hết rồi:))
Bài 1:
a) \(xy=14\Rightarrow x=\frac{14}{y}\)
Thay vào: \(\frac{14}{y}+y=9\)
\(\Leftrightarrow y^2+14-9y=0\)
\(\Leftrightarrow\left(y-2\right)\left(y-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=2\\y=7\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}\)
+ Nếu: \(\hept{\begin{cases}x=7\\y=2\end{cases}}\Rightarrow x-y=5\)
+ Nếu: \(\hept{\begin{cases}x=2\\y=7\end{cases}}\Rightarrow x-y=-5\)
b) Ta có: \(x+y=9\)
\(\Leftrightarrow\left(x+y\right)^2=81\)
\(\Leftrightarrow x^2+2xy+y^2=81\)
\(\Rightarrow x^2+y^2=81-2xy=81-2.14=53\)
c) Ta có: \(x+y=9\)
\(\Leftrightarrow\left(x+y\right)^3=9^3\)
\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=729\)
\(\Leftrightarrow x^3+y^3=729-3xy\left(x+y\right)=729-3.14.9=351\)
Bài 1.
A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1
B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25
C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )
= -1( 25 + 12 ) + 3.(-12).(-1)
= -37 + 36
= -1
D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37
Bài 2.
M = 3( x2 + y2 ) - 2( x3 + y3 )
= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )
= 3( x2 + y2 ) - 2( x2 - xy + y2 )
= 3x2 + 3y2 - 2x2 + 2xy - 2y2
= x2 + 2xy + y2
= ( x + y )2 = 12 = 1
\(a)\)\(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\) ( đề nhầm đúng ko bn )
\(M=\left(x^3-3x^2y+3xy^2-y^3\right)-\left(x^2-2xy+y^2\right)\)
\(M=\left(x-y\right)^3-\left(x-y\right)^2\)
\(M=7^3-7^2\)
\(M=294\)
Chúc bạn học tốt ~
a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(A=x^2+2x+y^2-2y-2xy+37\)
\(A=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+1+36\)
\(A=\left(x-y+1\right)^2+36\)
Thay x - y = 7 vào A
\(A=\left(7+1\right)^2+36\)
\(A=8^2+36\)
\(A=64+36\)
\(A=100\)
b) \(B=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-9\)
\(B=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2+xy-3xy+y^2\right)-9\)
\(B=\left(x-y\right)^3+\left(x^2-2xy+y^2\right)-9\)
\(B=\left(x-y\right)^3+\left(x-y\right)^2-9\)
Thay x - y = 7 vào B
\(B=7^3+7^2-9\)
\(B=343+49-9\)
\(B=383\)
c) \(C=x^3-x^2-y^3-y^2-3xy\left(x-y\right)+2xy\)
\(C=\left[x^3-y^3-3xy\left(x-y\right)\right]-\left(x^2-2xy+y^2\right)\)
\(C=\left(x-y\right)^3-\left(x-y\right)^2\)
Thay x - y = 7 vào C
\(C=7^3-7^2\)
\(C=343-49\)
\(C=294\)
d) \(D=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)
\(D=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-95\)
\(D=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2-2xy+y^2\right)-95\)
\(D=\left(x-y\right)^3+\left(x-y\right)^2-95\)
Thay x - y = 7 vào D
\(D=7^3+7^2-95\)
\(D=343+49-95\)
\(D=297\)
Bài 1 :
a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)
TH1 : \(x-3=2\Leftrightarrow x=5\)
TH2 : \(x-3=-2\Leftrightarrow x=1\)
b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
TH1 : \(x-6=0\Leftrightarrow x=6\)
TH2 : \(x+4=0\Leftrightarrow x=-4\)
c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)
\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)
d, tương tự
bài 1:
a)\(A=x^3+y^3+xy=1^3+\left(-1\right)^3+1.\left(-1\right)=1-1-1=-1\)
b)\(B=\sqrt{x^2+y^2}=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=\left|10\right|=10\)
c)\(C=10x+10y+15=10\left(x+y\right)+15=10.1+15=25\)
d)\(D=x^2y+y^2x+5=xy\left(x+y\right)+5=xy.0+5=5\)
e)\(E=4x+7x^2y^2+3y^4+5y^2=?????\)
Bài 2:
bạn chỉ cần tìm nhân tử chung r gộp lại dưới dạng tích
VD: 10x+5xy=5x(2+y)
1a : x = -1
2a : x = 10
còn mấy bài khác mình không biết giải nha
Bài 8: Cho a+b= 1 nha ( mk thiếu đề)
Bài 1:
Theo bài ra ta có:
\(\left(x-y\right)^2=x^2-2xy+y^2\)
\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)
\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)
\(=25-10y+y^2+25-10x+x^2-4\)
\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)
\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)
\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)
\(=50-50+5^2-4-4\)
\(=25-8=17\)
Vậy giá trị của \(\left(x-y\right)^2\)là 17