Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu của hai phân thức sau:
\(\left(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\right)-\left(\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}\right)=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}-\frac{y^2}{x+y}-\frac{z^2}{y+z}-\frac{x^2}{z+x}\)
\(=\left(\frac{x^2}{x+y}-\frac{y^2}{x+y}\right)+\left(\frac{y^2}{y+z}-\frac{z^2}{y+z}\right)+\left(\frac{z^2}{z+x}-\frac{x^2}{z+x}\right)=x-y+y-z+z-x=0\)
Vì hiệu của chúng bằng \(0\) nên số bị trừ sẽ bằng số trừ, tức là:
\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}=\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}\)
Mà \(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}=2015\) (theo giả thiết)
Vậy, \(\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}=2015\)
Vì hiệu của chúng bằng 0 nên số bị trừ sẽ bằng số trừ ,tức là:
x^2/x+y+y^2/y+z+z^2/z+x=y^2/x+y+z^2/y+z+x^2/z+x
Mà x^2/x+y+y^2/y+z+z^2/z+x=2015(giả thiết)
Vậy y^2/x+y+z^2/y+z+x^2/z+x=2015
Sử dụng BĐT AM-GM, ta có:
\(x^3+y^2\ge2yx\sqrt{x}\)
\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2yx\sqrt{x}}=\frac{1}{xy}\)
Tương tự cộng lại suy ra:
\(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Ta có:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
\(\Leftrightarrow\left(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}\right)+\left(\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}\right)+\left(\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}\right)=0\)
\(\Leftrightarrow x^2.\frac{b^2+c^2}{a^2+b^2+c^2}+y^2.\frac{a^2+c^2}{a^2+b^2+c^2}+z^2.\frac{a^2+b^2}{a^2+b^2+c^2}=0\)
Vì a, b, c khác 0 nên dấu bằng xảy ra khi \(x=y=z=0\)
\(\Rightarrow M=x^{2016}+y^{2016}+z^{2016}=0^{2016}+0^{2016}+0^{2016}=0\)
Em tham khảo tại đây nhé.
Câu hỏi của Phạm Minh Tuấn - Toán lớp 8 - Học toán với OnlineMath
Áp đụng bất đẳng thức vào
\(\left(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}\right)\ge\frac{\left(x+y+z\right)^2}{2+3+4}=\frac{x^2+y^2+z^2}{2+3+4}+\frac{2\left(xz+yz+xy\right)}{2+3+4}\)
\(\Rightarrow\hept{\begin{cases}2\left(xz+yz+xy\right)=0\\\frac{x^2}{2}=\frac{y^2}{3}=\frac{z^2}{4}\end{cases}\Rightarrow x=y=z=0}\)\(\Rightarrow D=0\)
Ta có
\(\frac{x^2+y^2+z^2}{2+3+4}=\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}\)
\(\Leftrightarrow\left(\frac{x^2}{2}-\frac{x^2}{9}\right)+\left(\frac{y^2}{3}-\frac{y^2}{9}\right)+\left(\frac{z^2}{4}-\frac{z^2}{9}\right)=0\)
\(\Leftrightarrow\frac{7x^2}{18}+\frac{2y^2}{9}+\frac{5z^2}{36}=0\)
\(\Leftrightarrow x=y=z=0\)
\(\Rightarrow D=0\)