K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2015

+A>0

+ Ta có \(\frac{1}{n^2}<\frac{1}{\left(n-1\right)n}\) với n >1

\(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}=\frac{1}{2}-\frac{1}{2014}=\frac{503}{1007}<1\)

=>   0<A<1 => [A] =0

15 tháng 8 2016

Ta có : \(1+2=\frac{2.3}{2}\) , \(1+2+3=\frac{3.4}{2}\) ,

 \(1+2+3+4=\frac{4.5}{2}\) , ......... , \(1+2+3+4+....+2014=\frac{2014.2015}{2}\)

Suy ra : \(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2014.2015}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2014.2015}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)

\(2\left(\frac{1}{2}-\frac{1}{2015}\right)\)

15 tháng 8 2016

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2014}\)

\(A=\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+...+\frac{1}{\left(1+2014\right).2014:2}\)

\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2014.2015}\)

\(A=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2014.2015}\right)\)

\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2014}-\frac{1}{2015}\right)\)

\(A=2.\left(\frac{1}{2}-\frac{1}{2015}\right)\)

\(A=2.\frac{1}{2}-2.\frac{1}{2015}\)

\(A=1-\frac{2}{2015}\)

\(A=\frac{2013}{2015}\)

 

4 tháng 4 2016

Bạn xem lại đề câu a) cho rõ lại

Câu b) Tại x=2013 thì B=x2013-(x+1)x2012+(x+1)x2011-(x+1)x2010+...-(x+1)x2+(x+1)x-1

                                 = x2013-x2013-x2012+x2012+x2011-x2011-x2010+..-x3 - x2+x2+x-1

                                 = x-1 =  2012

27 tháng 3 2017

phải là so sánh A với 2 mới đúng

21 tháng 1 2016

A=2/6+2/12+....+2/4054182

A=2/2.3+2/3.4+...+2/2013.2014

A= (1-2/2014) : 2=503/1007

13 tháng 8 2016

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2014}\)

\(A=\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+...+\frac{1}{\left(1+2014\right).2014:2}\)

\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2014.2015}\)

\(A=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\right)\)

\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)

\(A=2.\left(\frac{1}{2}-\frac{1}{2015}\right)\)

\(A=2.\frac{1}{2}-2.\frac{1}{2015}\)

\(A=1-\frac{2}{2015}=\frac{2013}{2015}\)

24 tháng 2 2016

\(\approx0,4\)

5 tháng 4 2017

Deo biet

12 tháng 2 2016

Mk vừa làm vòng 12 . Mk cũng gặp phải bài khó này

12 tháng 2 2016

vc câu trả lời của bạn