\(\frac{1}{1+2}+\frac{1}{1+2+3}+......+\frac{1}{1+2+3+4+...2014}\)   có giá...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2014}\)

\(A=\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+...+\frac{1}{\left(1+2014\right).2014:2}\)

\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2014.2015}\)

\(A=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\right)\)

\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)

\(A=2.\left(\frac{1}{2}-\frac{1}{2015}\right)\)

\(A=2.\frac{1}{2}-2.\frac{1}{2015}\)

\(A=1-\frac{2}{2015}=\frac{2013}{2015}\)

15 tháng 8 2016

Ta có : \(1+2=\frac{2.3}{2}\) , \(1+2+3=\frac{3.4}{2}\) ,

 \(1+2+3+4=\frac{4.5}{2}\) , ......... , \(1+2+3+4+....+2014=\frac{2014.2015}{2}\)

Suy ra : \(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2014.2015}\)

\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2014.2015}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)

\(2\left(\frac{1}{2}-\frac{1}{2015}\right)\)

15 tháng 8 2016

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2014}\)

\(A=\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+...+\frac{1}{\left(1+2014\right).2014:2}\)

\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2014.2015}\)

\(A=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2014.2015}\right)\)

\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2014}-\frac{1}{2015}\right)\)

\(A=2.\left(\frac{1}{2}-\frac{1}{2015}\right)\)

\(A=2.\frac{1}{2}-2.\frac{1}{2015}\)

\(A=1-\frac{2}{2015}\)

\(A=\frac{2013}{2015}\)

 

21 tháng 1 2016

A=2/6+2/12+....+2/4054182

A=2/2.3+2/3.4+...+2/2013.2014

A= (1-2/2014) : 2=503/1007

22 tháng 3 2016

1

2014

6 tháng 3 2019

\(A=\left(\frac{1}{3^2}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(3^2A=3^2\left(\frac{1}{3^2}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\right)-3^2\left(\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(9A=\left(1+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(3+\frac{1}{3}+...+\frac{1}{3^{97}}\right)\)

\(9A-A=\left(1-\frac{1}{3^{100}}\right)-\left(3-\frac{1}{3^{99}}\right)\)

\(8A=1-3=-2\)

A=\(\frac{-2}{8}=\frac{-1}{4}\)

\(B=4\left|\frac{-1}{4}\right|+\frac{1}{3^{100}}=1+\frac{1}{3^{100}}=1\)

Vậy B=1

15 tháng 2 2020

Trl:

          Bạn kia trả lời đúng rồi nhoa : ))

Hok tốt

~ nhé bạn ~