Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=x4+12+2x3+2x+3x2
A=(x2)2+2(x2)(1)+(1)2-2x2+2x(x2+1)+3x2
A=(x2+1)2+2x(x2+1)+x2
Đặt a=x2+1
Khi đó đa thức trở thành:
A=a2+2ax+x2
A=(a+x)2
A=(x2+1+x)2
\(A=\left(x\right)^2+2\left(x\right)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2-\frac{1}{4}+\frac{4}{4}\)
\(A=\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]^2\)
Ta có:
\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Leftrightarrow A\ge\frac{3}{4}\)
Dấu"=" xảy ra khi:
\(x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy GTNN của A là \(\frac{3}{4}\)khi x=\(\frac{-1}{2}\)
hình như theo cách giải của Nguyễn Triệu Khả Nhi thì GTNN của P=0 thì mới đúng
\(M=2x^2-8x+\sqrt{x^2-4x+5}+6\)
\(=2\left(x^2-4x+5\right)+\sqrt{x^2-4x+5}-4\)
Đặt \(\sqrt{x^2-4x+5}=t\)
Ta thấy \(x^2-4x+5=\left(x^2-4x+4\right)+1=\left(x+2\right)^2+1\ge1\)
Vậy nên \(\sqrt{x^2-4x+5}\ge1\Rightarrow t\ge1\)
Khi đó \(M=2t^2+t-4=2\left(t^2+\frac{1}{2}t-2\right)=2\left[\left(t^2+2.t.\frac{1}{4}+\frac{1}{16}\right)-\frac{33}{16}\right]\)
\(=2\left[\left(t+\frac{1}{4}\right)^2-\frac{33}{16}\right]=2\left(t+\frac{1}{4}\right)^2-\frac{33}{8}\)
Do \(t\ge1,\left(t+\frac{1}{4}\right)^2\ge\frac{25}{16}\)
Vậy thì \(M\ge2.\frac{25}{16}-\frac{33}{8}=-1\)
Vậy \(minM=-1\) khi t = 1
hay \(\sqrt{x^2-4x+5}=0\Rightarrow x^2-4x+5=2\Rightarrow x^2-4x+4=0\Rightarrow x=2\)
A= 2x2+y2- 2xy - 2x +3
= x2 + y2 - 2xy + x2 - 2x +1 - 1 + 3
= (x-y)2 + (x-1)2 + 2 >=2 --> MIN A=2 khi x=-1;y=-1
Ta có: A = \(\frac{3x^2-2x+3}{x^2+1}=\frac{3\left(x^2+1\right)-2x}{x^2+1}\)
\(=3+\frac{-2x}{x^2+1}=3+\frac{x^2-2x+1-\left(x^2+1\right)}{x^2+1}\)
\(=3+\frac{\left(x-1\right)^2}{x^2+1}-1\)
\(=\frac{\left(x-1\right)^2}{x^2+1}+2\ge2\forall x\)
Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1
Vậy MinA = 2 khi x = 1
Câu b mình viết nhầm dấu \(\ge\)đáng lẽ đúng phải là \(\le\)
a)
\(A=x^2+y^2-x+6y+10.\)
\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(MinA=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}}\)
b)
\(B=2x-2x^2-5\)
\(=-2\left(x^2-x+\frac{1}{4}\right)+2.\frac{1}{4}-5\)
\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(MaxB=-\frac{9}{2}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
\(A=2x^2+2\sqrt{2}x+3\\ =2\left(x^2+\sqrt{2}x+\dfrac{3}{2}\right)\\ =2.\left(x^2+2.\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}+1\right)\\ =2.\left(x^2+2.\dfrac{1}{\sqrt{2}}x+\dfrac{1}{2}\right)+2\\ =2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2+2\)
Ta có \(2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2\ge0\forall x\)
\(2.\left(x+\dfrac{1}{\sqrt{2}}\right)^2+2\ge2\forall x\)
Dấu bằng xảy ra khi : \(x+\dfrac{1}{\sqrt{2}}=0\\ \Rightarrow x=\dfrac{-\sqrt{2}}{2}\)
Vậy \(Min_A=2\) khi \(x=\dfrac{-\sqrt{2}}{2}\)