Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x = 14 => x + 1 = 15; x + 2 = 16; 2x + 1 = 29; x - 1 = 13
=> B = x^5 - 15x^4 + 16x^3 - 29x^2 + 13x
= x^5 - (x + 1)x^4 + (x + 2)x^3 - (2x + 1)x^2 + (x - 1)x
= x^5 - x^5 - x^4 + x^4 + 2x^3 - 2x^3 - x^2 + x^2 - x
= -x = -14
Bài làm :
\(x^5-15x^4+16x^3-29x^2+13x\)
\(=x^5-14x^4-x^4+14x^3+2x^3-28x^2-x^2+14x-x\)
\(=x^4\left(x-14\right)-x^3\left(x-14\right)+2x^2\left(x-14\right)-x\left(x-14\right)-x\)
\(=\left(x^4-x^3+2x^2-x\right)\left(x-14\right)-x\)
Thay x = 14 vào biểu thức trên , ta có :
\(\left(14^4-14^3+2.14^2-14\right)\left(14-14\right)-14\)
\(=\left(14^4-14^3+2.14^2-14\right).0-14\)
\(=0-14\)
\(=-14\)
Vậy biểu thức = -14 khi x = 14 .
Học tốt
\(B=x^5-15x^4+16x^3-29x^2+13x\)
\(=x^5-14x^4-x^4+14x^3+2x^3-28x^2-x^2+14x-x+14-14\)
\(=x^4\left(x-14\right)-x^3\left(x-14\right)+2x^2\left(x-14\right)-x\left(x-14\right)-\left(x-14\right)-14\)
\(=\left(x^4-x^3+2x^2-x-1\right)\left(x-14\right)-14\)
Thay x = 14 => B = -14
Vậy...
phần còn lại tách ra làm tương tự nhé
\(C=x^5-15x^4+16x^3-29x^2+13x\)
\(C=x^5-14x^4-x^4+14x^3+2x^3-28x^2-x^2+14x-x\)
\(C=x^4\left(x-14\right)-x^3\left(x-14\right)+2x^2\left(x-14\right)-x\left(x-14\right)-x\)
\(C=\left(x^4-x^3+2x^2-x\right)\left(x-14\right)-x\)
Thay \(x=14\) vào \(C\):
\(\Rightarrow C=\left(14^4-14^3+2.14^2-14\right)\left(14-14\right)-14\)
\(C=0-14=-14\)
Vậy \(C=-14\) tại \(x=14\)
1. \(< =>\left(6x^2+31x+18\right)-\left(6x^2+13x+2\right)=x+1-a+6\)
\(< =>6x^2+31x+18-6x^2-13x-2=7\)
\(< =>18x+16=7\)
\(< =>18x=7-16\)
\(< =>18x=-9\)
\(< =>x=-\frac{9}{18}=-\frac{1}{2}\)
A = 5x( x - 1 )( 2x + 3 ) - 10x( x - 4 )
= 5x( 2x2 + x - 3 ) - 10x2 + 40x
= 10x3 + 5x2 - 15x - 10x2 + 40x
= 10x3 - 5x2 + 25x
Thế x = -1/3 ta được
A = \(10\times\left(-\frac{1}{3}\right)^3-5\times\left(-\frac{1}{3}\right)^2+25\times\left(-\frac{1}{3}\right)\)
= \(10\times\left(-\frac{1}{27}\right)-5\times\frac{1}{9}-\frac{25}{3}\)
= \(-\frac{10}{27}-\frac{5}{9}-\frac{25}{3}\)
= \(-\frac{250}{27}\)
b) Đề sai . Tính khó
c) x = 14
=> 13 = x - 1
15 = x + 1
16 = x + 2
29 = 2x + 1
Thế vào C ta được :
C = x5 - ( x + 1 )x4 + ( x + 2 )x3 - ( 2x + 1 )x2 + ( x - 1 )x
= x5 - x5 - x4 + x4 + 2x3 - 2x3 - x2 + x2 - x
= -x = -14
Ta có:x5-15x4+16x3-29x3+13x=x5-15x4-13x3+13x
Thay x=4 vào bt, ta có:
45-15.44-13.43+13.4
=1024-3840-832+52
=-3596
Bài 1:
b: \(=\left(y^2-4\right)\left(y^2+4\right)=y^4-16\)
a: \(=6x^{n+2}-6x^n+6x^n+2x=6x^{n+2}+2x\)
a) Ta có: \(A=x^5-15x^4+16x^3-29x^2+13x\)
\(=\left(x^5-14x^4\right)-\left(x^4-14x^3\right)+\left(2x^3-28x^2\right)-\left(x^2-14x\right)-x\)
\(=x^4\left(x-14\right)-x^3\left(x-14\right)+2x^2\left(x-14\right)-x\left(x-14\right)-x\)
\(=\left(x-14\right)\left(x^4-x^3+2x^2-x\right)-x\)(thay x = 14)
\(=-x=-14\)
Vậy A = -14.
b) Ta có: \(B=x^{14}-10x^3+10x^{12}-10x^{11}+...+10x^2-10x+10\) tại x = 9.
\(\cdot x=9\Rightarrow10=x+1\)
\(\Rightarrow B=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+10\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{13}-x^{12}+...+x^3+x^2-x^2-x+10\)
\(=-x-10=-9-10=-19.\)
Vậy B = -19.
a) Ta có:
\(A=x^5-15x^4+16x^3-29x^2+13x\)
\(=\left(x^5-14x^4\right)-\left(x^4-14x^3\right)+\left(2x^3-28x^2\right)-\left(x^2-14x\right)-x\)
\(=x^4\left(x-14\right)-x^3\left(x-14\right)+2x^2\left(x-14\right)-x\left(x-14\right)-x\)
\(=\left(x-14\right)\left(x^4-x^3+2x^2-x\right)-x\)(thay \(x=14\))
\(=-x=-14\)
Vậy \(A=-14\)
b) Ta có:
\(B=x^{14}-10x^3+10x^{12}-10x^{11}+...+10x^2-10x+10\)tại \(x=9\)
\(x=9\Rightarrow10=x+1\)
\(\Rightarrow B=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+10\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{13}-x^{12}+...+x^3+x^2-x^2-x+10\)
\(=-x-10=-9-10=-19\)
Vậy \(B=-19\)
\(M=x^5-15x^4+16x^3-29x^2+13x\)
\(=x^5-14x^4-x^4+14x^3+2x^3-28x^2-x^2+14x-x\)
\(=x^4\left(x-14\right)-x^3\left(x-14\right)+2x^2\left(x-14\right)-x\left(x-14\right)-x\)
\(=\left(x^4-x^3+2x^3-x\right)\left(x-14\right)-x\)
Thay \(x=14\) vào biểu thức M, ta có:
\(M=\left(14^4-14^3+2.14^2-14\right)\left(14-14\right)-14\)
\(=0-14\)
\(=-14\)