K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2021

\(M=x^5-15x^4+16x^3-29x^2+13x\)

\(=x^5-14x^4-x^4+14x^3+2x^3-28x^2-x^2+14x-x\)

\(=x^4\left(x-14\right)-x^3\left(x-14\right)+2x^2\left(x-14\right)-x\left(x-14\right)-x\)

\(=\left(x^4-x^3+2x^3-x\right)\left(x-14\right)-x\)

Thay \(x=14\) vào biểu thức M, ta có:

\(M=\left(14^4-14^3+2.14^2-14\right)\left(14-14\right)-14\)

\(=0-14\)

\(=-14\)

 

7 tháng 9 2020

Vì x = 14 => x + 1 = 15; x + 2 = 16; 2x + 1 = 29; x - 1 = 13
=> B = x^5 - 15x^4 + 16x^3 - 29x^2 + 13x
= x^5 - (x + 1)x^4 + (x + 2)x^3 - (2x + 1)x^2 + (x - 1)x
= x^5 - x^5 - x^4 + x^4 + 2x^3 - 2x^3 - x^2 + x^2 - x
= -x = -14

Bài làm :

\(x^5-15x^4+16x^3-29x^2+13x\)

\(=x^5-14x^4-x^4+14x^3+2x^3-28x^2-x^2+14x-x\)

\(=x^4\left(x-14\right)-x^3\left(x-14\right)+2x^2\left(x-14\right)-x\left(x-14\right)-x\)

\(=\left(x^4-x^3+2x^2-x\right)\left(x-14\right)-x\)

Thay x = 14 vào biểu thức trên , ta có :

\(\left(14^4-14^3+2.14^2-14\right)\left(14-14\right)-14\)

\(=\left(14^4-14^3+2.14^2-14\right).0-14\)

\(=0-14\)

\(=-14\)

Vậy biểu thức = -14 khi x = 14 .

Học tốt

27 tháng 5 2017

\(B=x^5-15x^4+16x^3-29x^2+13x\)

\(=x^5-14x^4-x^4+14x^3+2x^3-28x^2-x^2+14x-x+14-14\)

\(=x^4\left(x-14\right)-x^3\left(x-14\right)+2x^2\left(x-14\right)-x\left(x-14\right)-\left(x-14\right)-14\)

\(=\left(x^4-x^3+2x^2-x-1\right)\left(x-14\right)-14\)

Thay x = 14 => B = -14

Vậy...

phần còn lại tách ra làm tương tự nhé

3 tháng 3 2018

cu tao to

12 tháng 7 2018

\(C=x^5-15x^4+16x^3-29x^2+13x\)

\(C=x^5-14x^4-x^4+14x^3+2x^3-28x^2-x^2+14x-x\)

\(C=x^4\left(x-14\right)-x^3\left(x-14\right)+2x^2\left(x-14\right)-x\left(x-14\right)-x\)

\(C=\left(x^4-x^3+2x^2-x\right)\left(x-14\right)-x\)

Thay \(x=14\) vào \(C\):

\(\Rightarrow C=\left(14^4-14^3+2.14^2-14\right)\left(14-14\right)-14\)

\(C=0-14=-14\)

Vậy \(C=-14\) tại \(x=14\)

29 tháng 6 2016

1. \(< =>\left(6x^2+31x+18\right)-\left(6x^2+13x+2\right)=x+1-a+6\)

      \(< =>6x^2+31x+18-6x^2-13x-2=7\)

       \(< =>18x+16=7\)

        \(< =>18x=7-16\)

           \(< =>18x=-9\)

           \(< =>x=-\frac{9}{18}=-\frac{1}{2}\)

29 tháng 6 2016

2. vì x=14 nên x+1=15 ; x+2 = 16;    2x + 1 =29;   x-1=13

thay  vào A ta được

\(A=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)

\(A=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)

\(A=-x=-14\)

22 tháng 9 2020

A = 5x( x - 1 )( 2x + 3 ) - 10x( x - 4 )

= 5x( 2x2 + x - 3 ) - 10x2 + 40x

= 10x3 + 5x2 - 15x - 10x2 + 40x

= 10x3 - 5x2 + 25x

Thế x = -1/3 ta được

A = \(10\times\left(-\frac{1}{3}\right)^3-5\times\left(-\frac{1}{3}\right)^2+25\times\left(-\frac{1}{3}\right)\)

\(10\times\left(-\frac{1}{27}\right)-5\times\frac{1}{9}-\frac{25}{3}\)

\(-\frac{10}{27}-\frac{5}{9}-\frac{25}{3}\)

\(-\frac{250}{27}\)

b) Đề sai . Tính khó

c) x = 14

=> 13 = x - 1

15 = x + 1

16 = x + 2

29 = 2x + 1 

Thế vào C ta được :

C = x5 - ( x + 1 )x4 + ( x + 2 )x3 - ( 2x + 1 )x2 + ( x - 1 )x

= x5 - x5 - x4 + x4 + 2x3 - 2x3 - x2 + x2 - x

= -x = -14

11 tháng 7 2018

  Ta có:x5-15x4+16x3-29x3+13x=x5-15x4-13x3+13x

  Thay x=4 vào bt, ta có:

    45-15.44-13.43+13.4

=1024-3840-832+52

=-3596

11 tháng 7 2018

3596 nh bn

học tốt

Bài 1:

b: \(=\left(y^2-4\right)\left(y^2+4\right)=y^4-16\)

a: \(=6x^{n+2}-6x^n+6x^n+2x=6x^{n+2}+2x\)

11 tháng 7 2018

a) Ta có: \(A=x^5-15x^4+16x^3-29x^2+13x\)

\(=\left(x^5-14x^4\right)-\left(x^4-14x^3\right)+\left(2x^3-28x^2\right)-\left(x^2-14x\right)-x\)

\(=x^4\left(x-14\right)-x^3\left(x-14\right)+2x^2\left(x-14\right)-x\left(x-14\right)-x\)

\(=\left(x-14\right)\left(x^4-x^3+2x^2-x\right)-x\)(thay x = 14)

\(=-x=-14\)

Vậy A = -14.

b) Ta có: \(B=x^{14}-10x^3+10x^{12}-10x^{11}+...+10x^2-10x+10\) tại x = 9.

\(\cdot x=9\Rightarrow10=x+1\)

\(\Rightarrow B=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+10\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{13}-x^{12}+...+x^3+x^2-x^2-x+10\)

\(=-x-10=-9-10=-19.\)

Vậy B = -19.

21 tháng 8 2018

a) Ta có:

\(A=x^5-15x^4+16x^3-29x^2+13x\)

\(=\left(x^5-14x^4\right)-\left(x^4-14x^3\right)+\left(2x^3-28x^2\right)-\left(x^2-14x\right)-x\)

\(=x^4\left(x-14\right)-x^3\left(x-14\right)+2x^2\left(x-14\right)-x\left(x-14\right)-x\)

\(=\left(x-14\right)\left(x^4-x^3+2x^2-x\right)-x\)(thay \(x=14\))

\(=-x=-14\)

Vậy \(A=-14\)

b) Ta có:

\(B=x^{14}-10x^3+10x^{12}-10x^{11}+...+10x^2-10x+10\)tại \(x=9\)

\(x=9\Rightarrow10=x+1\)

\(\Rightarrow B=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+10\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{13}-x^{12}+...+x^3+x^2-x^2-x+10\)

\(=-x-10=-9-10=-19\)

Vậy \(B=-19\)