K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2014

\(=cot\left(90^o-15^o\right).cot\left(90^o-35^o\right).tan45^o.tan55^o.tan75^o\)

\(=cot75^o.cot55^o.tan45^o.tan55^o.tan75^o\)

\(=\left(tan75^o.cot75^o\right).\left(tan55^o.cot55^o\right).tan45^o\)

\(=1.1.1\)

\(=1\)

NV
8 tháng 6 2019

\(tan75^0=cot\left(90^0-75^0\right)=cot15^0\) tương tự ta có:

\(tan15.tan25.tan35...tan75=tan15.tan75.tan25.tan65.tan35.tan55.tan45\)

\(=tan15.cot15.tan25.cot25.tan35.cot35.tan45\)

\(=1.1.1=1\)

b/ \(sina=\pm\sqrt{1-cos^2a}=\pm\frac{21}{29}\)

\(\Rightarrow tana=\frac{sina}{cosa}=\pm\frac{21}{20}\); \(cota=\frac{1}{tana}=\pm\frac{20}{21}\)

ĐK: \(x-9\ne0\Rightarrow x\ne9\)

\(\sqrt{x}\ge0\Rightarrow x\ge0\)

\(x+\sqrt{x}-6\ne0\Rightarrow x+3\sqrt{x}-2\sqrt{x}-6\ne0\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ne0\)

\(\Rightarrow\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)

ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)

\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\left(\frac{1+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\frac{1+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4\sqrt{x}-12}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-3\right)}\)

2, Với \(x=\frac{25}{16}\)\(\Rightarrow\sqrt{x}=\sqrt{\frac{25}{16}}=\frac{5}{4}\)

\(A=\frac{\frac{5}{4}\left(\frac{5}{4}-2\right)}{4\left(\frac{5}{4}-3\right)}=\frac{5}{4}.\left(-\frac{3}{4}\right):4\left(-\frac{7}{4}\right)=-\frac{15}{16}:-7=\frac{15}{112}\)

\(\orbr{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)\(\orbr{\begin{cases}\orbr{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}-3>0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}< 2\\\sqrt{x}>3\end{cases}}\Rightarrow\orbr{\begin{cases}x< 4\\x>9\end{cases}}}\\\orbr{\begin{cases}\sqrt{x}-2>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}>2\\\sqrt{x}< 3\end{cases}\Rightarrow\orbr{\begin{cases}x>4\\x< 9\end{cases}}}}\end{cases}}\)

10 tháng 9 2016

Ta có: \(\cos33^o=\sin57^o\)

Và \(\sin^244^o=\cos^246^o\)

Thay vào A, ta có;

\(A=\sin57^o-\sin57^o+\cos^246^o+\sin^246^o\)

A=1

2 tháng 9 2018

A B C O I H M N

Gọi N là trung điểm của AC. Nối N với O và M.

Do H là trực tâm \(\Delta\)ABC => ^BAH + ^ABC = 900 (1)

Dễ thấy MN là đường trung bình \(\Delta\)ABC => MN // AB => ^NMC = ^ABC (2)

Lại có: ^NMO + ^NMC = 900 (3)

Từ (1); (2) và (3) => ^BAH = ^NMO. Tương tự: ^ABH = ^MNO

=> \(\Delta\)AHB ~ \(\Delta\)MON (g.g) => \(\frac{AH}{MO}=\frac{AB}{MN}=2\)(Do MN là đg trung bình \(\Delta\)ABC)

\(\Rightarrow\frac{AH}{MO}=\frac{AI}{MI}=2\)(Vì I là trọng tâm và AM là trung tuyến \(\Delta\)ABC)

Xét \(\Delta\)AHI và \(\Delta\)MOI: ^HAI = ^OMI (Do AH // OM); \(\frac{AH}{MO}=\frac{AI}{MI}\)=> \(\Delta\)AHI ~ \(\Delta\)MOI (c.g.c)

\(\Rightarrow\frac{IH}{IO}=\frac{IA}{IM}=2\Rightarrow IH^2=4.IO^2\).Tương tự \(HA^2=4.OM^2\)

\(\Rightarrow\sqrt{\frac{IO^2+OM^2}{IH^2+HA^2}}=\sqrt{\frac{IO^2+OM^2}{4\left(IO^2+OM^2\right)}}=\frac{1}{2}.\)

ĐS: 1/2.

8 tháng 5 2015

\(E=\frac{\left(x^2-2x+1\right)-x+2}{\left(x-1\right)^2}=\frac{\left(x-1\right)^2-\left(x-1\right)+1}{\left(x-1\right)^2}=1-\frac{1}{x-1}+\frac{1}{\left(x-1\right)^2}\)

Đặt \(y=\frac{1}{x-1}\)

=> E = 1 - y + y2 = (y2 - 2. y . \(\frac{1}{2}\)\(\frac{1}{4}\)) + \(\frac{3}{4}\)= ( y - \(\frac{1}{2}\) )2 + \(\frac{3}{4}\) \(\ge\) 0 + \(\frac{3}{4}\) = \(\frac{3}{4}\)

=> Min E = \(\frac{3}{4}\) khi y - \(\frac{1}{2}\) = 0 <=> y =  \(\frac{1}{2}\)

=> x - 1 = 2 <=> x = 3