Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt a = 10k, b = 3k
\(\Rightarrow\frac{3\times10k-2\times3k}{10k-3\times3k}=\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)24
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{3}=\frac{b+c}{5}=\frac{c+a}{10}=\frac{a+b-b-c-c-a}{-12}=\frac{c}{6}\)
\(\Rightarrow\frac{a+b}{3}=\frac{c}{6}\Rightarrow\left(a+b\right).6=3c\Rightarrow6a+6b=3c\Rightarrow3a+3b=c\Rightarrow a+b=\frac{c}{3}\)
\(\frac{b+c}{5}=\frac{c}{6}\Rightarrow6b+6c=5c\Rightarrow6b=-c\Rightarrow b=\frac{-c}{6}\)
\(\frac{c+a}{10}=\frac{c}{6}\Rightarrow6c+6a=10c\Rightarrow6a=4c\Rightarrow3a=2c\Rightarrow a=\frac{2c}{3}\)
thay vào M ta có:
\(\frac{22c}{3}+\frac{-20c}{6}-c+2017=4c-c+2017=3c+2017\)
p/s: ko chắc :))
1) \(D=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+....+\frac{10}{1400}\)
\(D=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+.....+\frac{5}{700}\)
\(D=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+......+\frac{5}{25.28}\)
\(D=\frac{5}{3}.\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+.....+\frac{3}{25.28}\right)\)
\(D=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+....+\frac{1}{25}-\frac{1}{28}\right)\)
\(D=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{5}{3}.\frac{6}{28}=\frac{5}{14}\)
\(E=\frac{1}{1+2}+\frac{1}{1+2+3}+.......+\frac{1}{1+2+3+....+24}\)
Ta có: \(1+2=\)\(\frac{2.\left(2+1\right)}{2}=3\);\(1+2+3=\frac{3.\left(3+1\right)}{2}=6\);\(1+2+3+...+24=\frac{24.\left(24+1\right)}{2}=300\)
\(E=\frac{1}{3}+\frac{1}{6}+....+\frac{1}{300}\)
=>\(\frac{1}{2}E=\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{600}=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{24.25}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{24}-\frac{1}{25}=\frac{1}{2}-\frac{1}{25}=\frac{23}{50}\)
=>\(E=\frac{46}{50}\)
Vậy \(\frac{D}{E}=\frac{5}{14}:\frac{46}{50}=\frac{250}{644}=\frac{125}{322}\)
2) Theo t/c dãy tỉ số=nhau:
\(\frac{a+b}{a+c}=\frac{a-b}{a-c}=\frac{a+b-\left(a-b\right)}{a+c-\left(a-c\right)}=\frac{a+b-a+b}{a+c-a+c}=\frac{2b}{2c}=1\)
=>b=c
do đó \(A=\frac{10b^2+9bc+c^2}{2b^2+bc+2c^2}=\frac{10b^2+9b^2+b^2}{2b^2+b^2+2b^2}=\frac{\left(10+9+1\right).b^2}{\left(2+1+2\right).b^2}=4\)
Ta có:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Ta có:\(\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a\cdot a^2+a\cdot a^2+a\cdot a^2}{a^3+a^3+a^3}\)\(\Rightarrow\frac{3a^3}{3a^3}=1\)
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Leftrightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ac}\)
\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
<=> a = b = c
Vậy \(\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a^3+a^3+a^3}{a^3+a^3+a^3}=1\)
Do theo đề bài: \(\frac{a}{m}=\frac{b}{n}=\frac{c}{p}=-4\)
\(\Rightarrow\left(\frac{a}{m}\right)^3=\left(\frac{b}{n}\right)^3=\left(\frac{c}{p}\right)^3=\left(-4\right)^3\)
\(\Rightarrow\frac{a^3}{m^3}=\frac{b^3}{n^3}=\frac{c^3}{p^3}=-64\)
\(\Rightarrow\frac{-a^3}{m^3}=\frac{3\cdot b^3}{\left(-3\right)\cdot n^3}=\frac{\left(-2\right)\cdot c^3}{2\cdot p^3}=64\) ( 1 )
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{-a^3}{m^3}=\frac{3\cdot b^3}{\left(-3\right)\cdot n^3}=\frac{\left(-2\right)\cdot c^3}{2\cdot p^3}=\frac{\left(-a^3\right)+3\cdot b^3+\left(-2\right)\cdot c^3}{m^3+\left(-3\right)\cdot n^3+2\cdot p^3}=\frac{-a^3+3\cdot b^3-2\cdot c^3}{m^3-3.n^3+2\cdot p^3}\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra: \(\frac{-a^3+3\cdot b^3-2\cdot c^3}{m^3-3.n^3+2\cdot p^3}=64\)