Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\dfrac{3}{4}\right)^{-2}\cdot3^2\cdot12^0=16\)
b) \(\left(\dfrac{1}{12}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-2}=27\)
c) \(\left(2^{-2}\cdot5^2\right)^{-2}:\left(5\cdot5^{-5}\right)=16\)
a) \(a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{2}}\cdot a^{\dfrac{7}{6}}=a^{\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{7}{6}}=a^2\)
b) \(a^{\dfrac{2}{3}}\cdot a^{\dfrac{1}{4}}:a^{\dfrac{1}{6}}=a^{\dfrac{2}{3}+\dfrac{1}{4}-\dfrac{1}{6}}=a^{\dfrac{3}{4}}\)
c) \(\left(\dfrac{3}{2}a^{-\dfrac{3}{2}}\cdot b^{-\dfrac{1}{2}}\right)\left(-\dfrac{1}{3}a^{\dfrac{1}{2}}b^{\dfrac{2}{3}}\right)=\left(\dfrac{3}{2}\cdot-\dfrac{1}{3}\right)\left(a^{-\dfrac{3}{2}}\cdot a^{\dfrac{1}{2}}\right)\left(b^{-\dfrac{1}{2}}\cdot b^{\dfrac{2}{3}}\right)\)
\(=-\dfrac{1}{2}a^{-1}b^{-\dfrac{1}{3}}\)
a: \(A=\dfrac{25^6}{5^3}=\dfrac{\left(5^2\right)^6}{5^3}=\dfrac{5^{12}}{5^3}=5^9\)
b: \(B=32\cdot\left(\dfrac{3}{2}\right)^5=32\cdot\dfrac{3^5}{2^5}=32\cdot\dfrac{243}{32}=243\)
c: \(C=\left(\dfrac{1}{3}\right)^4\cdot3^{-3}=3^{-4}\cdot3^{-3}=3^{-4-3}=3^{-7}\)
d: \(D=4^{-2}\cdot\left(\dfrac{2}{5}\right)^5\cdot5^4\)
\(=\dfrac{1}{4^2}\cdot\dfrac{2^5}{5^5}\cdot5^4\)
\(=\dfrac{1}{16}\cdot\dfrac{32}{5}=\dfrac{2}{5}\)
e: \(E=9^{-5}:\left(\dfrac{5}{3}\right)^4\cdot25^2\)
\(=\dfrac{1}{9^5}:\dfrac{5^4}{3^4}\cdot\left(5^2\right)^2\)
\(=\dfrac{1}{3^{10}}\cdot\dfrac{3^4}{5^4}\cdot5^4=\dfrac{1}{3^6}\)
f: \(F=\left(\dfrac{5}{8}\right)^{-2}:4^2\)
\(=\left(1:\dfrac{5}{8}\right)^2:4^2\)
\(=\left(\dfrac{8}{5}\right)^2\cdot\dfrac{1}{16}=\dfrac{64}{25}\cdot\dfrac{1}{16}=\dfrac{4}{25}\)
g: \(G=\left(\dfrac{5}{3}\right)^3\cdot\left(\dfrac{9}{2}\right)^2:\left(\sqrt{3}\right)^4\)
\(=\dfrac{5^3}{3^3}\cdot\dfrac{9^2}{2^2}:9\)
\(=\dfrac{5^3\cdot3^4}{3^3\cdot2^2}\cdot\dfrac{1}{3^2}\)
\(=\dfrac{125}{2^2\cdot3}=\dfrac{125}{3\cdot4}=\dfrac{125}{12}\)
\(A=\dfrac{\left(5^2\right)^6}{5^3}=\dfrac{5^{12}}{5^3}=5^9\)
\(B=32.\left(\dfrac{3}{2}\right)^5=\dfrac{2^5.3^5}{2^5}=2^5\)
\(C=\left(\dfrac{1}{3}\right)^4.3^{-3}=\dfrac{1}{3^4.3^3}=\dfrac{1}{3^7}\)
\(D=4^{-2}.\left(\dfrac{2}{5}\right)^5.5^4=\dfrac{1}{\left(2^2\right)^2}.\dfrac{2^5}{5^5}.5^4=\dfrac{2}{5}\)
\(E=\dfrac{1}{9^5}.\dfrac{3^4}{5^4}.\left(5^2\right)^2=\dfrac{1}{3^{10}}.\dfrac{3^4}{5^4}.5^4=\dfrac{1}{3^6}\)
\(F=\dfrac{8^2}{5^2}:\left(2^2\right)^2=\dfrac{\left(2^3\right)^2}{5^2.2^4}=\dfrac{2^6}{5^2.2^4}=\dfrac{2^2}{5^2}\)
\(G=\dfrac{5^3}{3^3}.\dfrac{\left(3^2\right)^2}{2^2}:3^2=\dfrac{5^3}{3^3}.\dfrac{3^4}{2^2}.\dfrac{1}{3^2}=\dfrac{5^3}{3.2^2}\)
\(M=\left(\dfrac{1}{3}\right)^{12}\cdot\left(\dfrac{1}{3}\right)^{-15}+\left(\dfrac{2}{5}\right)^{-4}\cdot5^{-4}\cdot32\)
\(=\left(\dfrac{1}{3}\right)^{-3}+2^{-4}\cdot32\)
\(=27+\dfrac{32}{16}=27+2=29\)
a: \(A=\dfrac{9^4}{3^2}=\dfrac{\left(3^2\right)^4}{3^2}=\dfrac{3^8}{3^2}=3^6\)=729
b: \(B=81\left(\dfrac{5}{3}\right)^4=81\cdot\dfrac{5^4}{3^4}=\dfrac{81}{3^4}\cdot5^4=5^4=625\)
c: \(C=\left(\dfrac{4}{7}\right)^{-4}\cdot\left(\dfrac{2}{7}\right)^3\)
\(=\left(\dfrac{7}{4}\right)^4\cdot\left(\dfrac{2}{7}\right)^3\)
\(=\dfrac{7^4}{4^4}\cdot\dfrac{2^3}{7^3}\)
\(=\dfrac{2^3}{4^4}\cdot7\)
\(=\dfrac{2^3}{2^8}\cdot7=\dfrac{7}{2^5}=\dfrac{7}{32}\)
d: \(D=7^{-6}\cdot\left(\dfrac{2}{3}\right)^0\left(\dfrac{7}{5}\right)^6\)
\(=7^{-6}\left(\dfrac{7}{5}\right)^6\)
\(=\dfrac{1}{7^6}\cdot\dfrac{7^6}{5^6}=\dfrac{1}{5^6}=\dfrac{1}{15625}\)
e: \(E=8^3:\left(\dfrac{2}{3}\right)^5\cdot\left(\dfrac{1}{3}\right)^2\)
\(=2^6:\dfrac{2^5}{3^5}\cdot\dfrac{1}{3^2}\)
\(=2^6\cdot\dfrac{3^5}{2^5}\cdot\dfrac{1}{3^2}\)
\(=\dfrac{2^6}{2^5}\cdot\dfrac{3^5}{3^2}=3^3\cdot2=54\)
f: \(F=\left(\dfrac{7}{9}\right)^{-2}\cdot\left(\dfrac{1}{\sqrt{3}}\right)^8\)
\(=\left(\dfrac{9}{7}\right)^2\cdot\left(\dfrac{1}{3}\right)^4\)
\(=\dfrac{9^2}{7^2}\cdot\dfrac{1}{3^4}=\dfrac{9^2}{3^4}\cdot\dfrac{1}{7^2}=\dfrac{81}{81}\cdot\dfrac{1}{49}=\dfrac{1}{49}\)
g: \(G=\left(-\dfrac{4}{5}\right)^{-2}\cdot\left(\dfrac{2}{5}\right)^2\cdot\left(\sqrt{2}\right)^3\)
\(=\left(-\dfrac{5}{4}\right)^2\cdot\left(\dfrac{2}{5}\right)^2\cdot2\sqrt{2}\)
\(=\dfrac{25}{16}\cdot\dfrac{4}{25}\cdot2\sqrt{2}=\dfrac{4}{16}\cdot2\sqrt{2}=\dfrac{8\sqrt{2}}{16}=\dfrac{\sqrt{2}}{2}\)
Ta có:
a) \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha \sin \frac{\pi }{6} = \frac{{\sqrt 6 }}{3}.\frac{{\sqrt 3 }}{2} + \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{1}{2} = \frac{{ - \sqrt 3 + 3\sqrt 2 }}{6}\)
b) \(\cos \left( {\alpha + \frac{\pi }{6}} \right) = \cos \alpha .\cos \frac{\pi }{6} - \sin \alpha \sin \frac{\pi }{6} = \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} - \frac{{\sqrt 6 }}{3}.\frac{1}{2} = - \frac{{3 + \sqrt 6 }}{6}\)
c) \(\sin \left( {\alpha - \frac{\pi }{3}} \right) = \sin \alpha \cos \frac{\pi }{3} - \cos \alpha \sin \frac{\pi }{3} = \frac{{\sqrt 6 }}{3}.\frac{1}{2} - \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} = \frac{{3 + \sqrt 6 }}{6}\)
d) \(\cos \left( {\alpha - \frac{\pi }{6}} \right) = \cos \alpha \cos \frac{\pi }{6} + \sin \alpha \sin \frac{\pi }{6} = \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} + \frac{{\sqrt 6 }}{3}.\frac{1}{2} = \frac{{ - 3 + \sqrt 6 }}{6}\)
a: \(A=3^{\dfrac{2}{5}}\cdot3^{\dfrac{1}{5}}\cdot3^{\dfrac{1}{5}}=3^{\dfrac{2}{5}+\dfrac{1}{5}+\dfrac{1}{5}}=3^{\dfrac{4}{5}}\)
b: \(B=\left(-27\right)^{\dfrac{1}{3}}=\left[\left(-3\right)^3\right]^{\dfrac{1}{3}}=\left(-3\right)^{\dfrac{1}{3}\cdot3}=\left(-3\right)^1=-3\)
c: \(C=\sqrt[3]{-64}\cdot\left(\dfrac{1}{2}\right)^3\)
\(=\sqrt[3]{\left(-4\right)^3}\cdot\dfrac{1}{2^3}=-4\cdot\dfrac{1}{8}=-\dfrac{4}{8}=-\dfrac{1}{2}\)
d: \(D=\left(-27\right)^{\dfrac{1}{3}}\cdot\left(\dfrac{1}{3}\right)^4\)
\(=\left[\left(-3\right)^3\right]^{\dfrac{1}{3}}\cdot\dfrac{1}{3^4}\)
\(=\left(-3\right)^{3\cdot\dfrac{1}{3}}\cdot\dfrac{1}{81}=\dfrac{-3}{81}=\dfrac{-1}{27}\)
e: \(E=\left(\sqrt{3}+1\right)^{106}\cdot\left(\sqrt{3}-1\right)^{106}\)
\(=\left[\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\right]^{106}\)
\(=\left(3-1\right)^{106}=2^{106}\)
f: \(F=360^{\sqrt{5}+1}\cdot20^{3-\sqrt{5}}\cdot18^{3-\sqrt{5}}\)
\(=360^{\sqrt{5}+1}\cdot\left(20\cdot18\right)^{3-\sqrt{5}}\)
\(=360^{\sqrt{5}+1}\cdot360^{3-\sqrt{5}}=360^{\sqrt{5}+1+3-\sqrt{5}}=360^4\)
g: \(G=2023^{3+2\sqrt{2}}\cdot2023^{2\sqrt{2}-3}\)
\(=2023^{3+2\sqrt{2}+2\sqrt{2}-3}\)
\(=2023^{4\sqrt{2}}\)
a/ \(=lim\frac{\left(-\frac{2}{3}\right)^n+1}{-2.\left(-\frac{2}{3}\right)^n+3}=\frac{1}{3}\)
b/ \(=lim\frac{\left(2-\frac{1}{n}\right)\left(1+\frac{1}{n}\right)\left(3+\frac{4}{n}\right)}{\left(\frac{5}{n}-6\right)^3}=\frac{2.1.3}{\left(-6\right)^3}=-\frac{1}{36}\)
c/ \(=lim\frac{5n+3}{\sqrt{n^2+5n+1}+\sqrt{n^2-2}}=\frac{5+\frac{3}{n}}{\sqrt{1+\frac{5}{n}+\frac{1}{n^2}}+\sqrt{1-\frac{2}{n}}}=\frac{5}{1+1}=\frac{5}{2}\)
d/ \(=lim\frac{5.\left(\frac{1}{2}\right)^n-6}{4.\left(\frac{1}{3}\right)^n+1}=\frac{-6}{1}=-6\)
e/ \(=-n^3\left(2+\frac{3}{n}-\frac{5}{n^2}+\frac{2020}{n^3}\right)=-\infty.2=-\infty\)
a: \(A=\dfrac{x^5}{x^3}\cdot\dfrac{y^{-2}}{y}=x^2\cdot y^{-1}=\dfrac{x^2}{y}\)
b: \(B=\dfrac{x^2\cdot y^{-3}}{x^3\cdot y^{-12}}=\dfrac{x^2}{x^3}\cdot\dfrac{y^{-3}}{y^{-12}}=\dfrac{1}{x}\cdot y^{-3+12}=\dfrac{y^9}{x}\)
a) \(A=\dfrac{x^5y^{-2}}{x^3y}=\dfrac{x^5}{x^3}.\dfrac{1}{y^{2-1}}=x^{5-3}y^{-1}=x^2y^{-1}\).
b) \(B=\dfrac{x^2y^{-3}}{\left(x^{-1}y^4\right)^{-3}}=\dfrac{x^2y^{-3}}{x^3y^{-12}}=x^{2-3}y^{-3-\left(-12\right)}=\dfrac{1}{xy^9}\)
a) \(\left(-5\right)^{-1}=-\dfrac{1}{5}\)
b) \(2^0\cdot\left(\dfrac{1}{2}\right)^{-5}=1\cdot32=32\)
c) \(6^{-2}\cdot\left(\dfrac{1}{3}\right)^{-3}:2^{-2}\)
\(=\dfrac{1}{36}\cdot27:\dfrac{1}{4}\)
\(=\dfrac{27\cdot4}{36}=3\)