Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\dfrac{3}{4}\right)^{-2}\cdot3^2\cdot12^0=16\)
b) \(\left(\dfrac{1}{12}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-2}=27\)
c) \(\left(2^{-2}\cdot5^2\right)^{-2}:\left(5\cdot5^{-5}\right)=16\)
a) \(\left(-5\right)^{-1}=-\dfrac{1}{5}\)
b) \(2^0\cdot\left(\dfrac{1}{2}\right)^{-5}=1\cdot32=32\)
c) \(6^{-2}\cdot\left(\dfrac{1}{3}\right)^{-3}:2^{-2}\)
\(=\dfrac{1}{36}\cdot27:\dfrac{1}{4}\)
\(=\dfrac{27\cdot4}{36}=3\)
a) \(\ln\left(\sqrt{5}+2\right)+\ln\left(\sqrt{5}-2\right)=ln\left(\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)\right)=\ln\left(\left(\sqrt{5}\right)^2-2^2\right)=ln\left(5-4\right)=\ln1=\ln e^0=1\)
b) \(\log400-\log4=\log\dfrac{400}{4}=\log100=\log10^{10}=10.\log10=10.1=10\)
c) \(\log_48+\log_412+\log_4\dfrac{32}{2}=\log_4\left(8.12.\dfrac{32}{2}\right)=\log_4\left(1024\right)=\log_44^5=5.\log_44=5.1=5\)
a: \(=ln_2\left[\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)\right]=ln1=0\)
b: \(=log\left(\dfrac{400}{4}\right)=log\left(100\right)=10\)
c: \(=log_4\left(8\cdot12\cdot\dfrac{32}{3}\right)=log_4\left(32\cdot32\right)=5\)
a) \(25^{\dfrac{1}{2}}=5\)
b) \(\left(\dfrac{36}{49}\right)^{-\dfrac{1}{2}}=\dfrac{7}{6}\)
c) \(100^{1,5}=1000\)
a: \(A=\dfrac{25^6}{5^3}=\dfrac{\left(5^2\right)^6}{5^3}=\dfrac{5^{12}}{5^3}=5^9\)
b: \(B=32\cdot\left(\dfrac{3}{2}\right)^5=32\cdot\dfrac{3^5}{2^5}=32\cdot\dfrac{243}{32}=243\)
c: \(C=\left(\dfrac{1}{3}\right)^4\cdot3^{-3}=3^{-4}\cdot3^{-3}=3^{-4-3}=3^{-7}\)
d: \(D=4^{-2}\cdot\left(\dfrac{2}{5}\right)^5\cdot5^4\)
\(=\dfrac{1}{4^2}\cdot\dfrac{2^5}{5^5}\cdot5^4\)
\(=\dfrac{1}{16}\cdot\dfrac{32}{5}=\dfrac{2}{5}\)
e: \(E=9^{-5}:\left(\dfrac{5}{3}\right)^4\cdot25^2\)
\(=\dfrac{1}{9^5}:\dfrac{5^4}{3^4}\cdot\left(5^2\right)^2\)
\(=\dfrac{1}{3^{10}}\cdot\dfrac{3^4}{5^4}\cdot5^4=\dfrac{1}{3^6}\)
f: \(F=\left(\dfrac{5}{8}\right)^{-2}:4^2\)
\(=\left(1:\dfrac{5}{8}\right)^2:4^2\)
\(=\left(\dfrac{8}{5}\right)^2\cdot\dfrac{1}{16}=\dfrac{64}{25}\cdot\dfrac{1}{16}=\dfrac{4}{25}\)
g: \(G=\left(\dfrac{5}{3}\right)^3\cdot\left(\dfrac{9}{2}\right)^2:\left(\sqrt{3}\right)^4\)
\(=\dfrac{5^3}{3^3}\cdot\dfrac{9^2}{2^2}:9\)
\(=\dfrac{5^3\cdot3^4}{3^3\cdot2^2}\cdot\dfrac{1}{3^2}\)
\(=\dfrac{125}{2^2\cdot3}=\dfrac{125}{3\cdot4}=\dfrac{125}{12}\)
\(A=\dfrac{\left(5^2\right)^6}{5^3}=\dfrac{5^{12}}{5^3}=5^9\)
\(B=32.\left(\dfrac{3}{2}\right)^5=\dfrac{2^5.3^5}{2^5}=2^5\)
\(C=\left(\dfrac{1}{3}\right)^4.3^{-3}=\dfrac{1}{3^4.3^3}=\dfrac{1}{3^7}\)
\(D=4^{-2}.\left(\dfrac{2}{5}\right)^5.5^4=\dfrac{1}{\left(2^2\right)^2}.\dfrac{2^5}{5^5}.5^4=\dfrac{2}{5}\)
\(E=\dfrac{1}{9^5}.\dfrac{3^4}{5^4}.\left(5^2\right)^2=\dfrac{1}{3^{10}}.\dfrac{3^4}{5^4}.5^4=\dfrac{1}{3^6}\)
\(F=\dfrac{8^2}{5^2}:\left(2^2\right)^2=\dfrac{\left(2^3\right)^2}{5^2.2^4}=\dfrac{2^6}{5^2.2^4}=\dfrac{2^2}{5^2}\)
\(G=\dfrac{5^3}{3^3}.\dfrac{\left(3^2\right)^2}{2^2}:3^2=\dfrac{5^3}{3^3}.\dfrac{3^4}{2^2}.\dfrac{1}{3^2}=\dfrac{5^3}{3.2^2}\)
a: \(A=3^{\dfrac{2}{5}}\cdot3^{\dfrac{1}{5}}\cdot3^{\dfrac{1}{5}}=3^{\dfrac{2}{5}+\dfrac{1}{5}+\dfrac{1}{5}}=3^{\dfrac{4}{5}}\)
b: \(B=\left(-27\right)^{\dfrac{1}{3}}=\left[\left(-3\right)^3\right]^{\dfrac{1}{3}}=\left(-3\right)^{\dfrac{1}{3}\cdot3}=\left(-3\right)^1=-3\)
c: \(C=\sqrt[3]{-64}\cdot\left(\dfrac{1}{2}\right)^3\)
\(=\sqrt[3]{\left(-4\right)^3}\cdot\dfrac{1}{2^3}=-4\cdot\dfrac{1}{8}=-\dfrac{4}{8}=-\dfrac{1}{2}\)
d: \(D=\left(-27\right)^{\dfrac{1}{3}}\cdot\left(\dfrac{1}{3}\right)^4\)
\(=\left[\left(-3\right)^3\right]^{\dfrac{1}{3}}\cdot\dfrac{1}{3^4}\)
\(=\left(-3\right)^{3\cdot\dfrac{1}{3}}\cdot\dfrac{1}{81}=\dfrac{-3}{81}=\dfrac{-1}{27}\)
e: \(E=\left(\sqrt{3}+1\right)^{106}\cdot\left(\sqrt{3}-1\right)^{106}\)
\(=\left[\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\right]^{106}\)
\(=\left(3-1\right)^{106}=2^{106}\)
f: \(F=360^{\sqrt{5}+1}\cdot20^{3-\sqrt{5}}\cdot18^{3-\sqrt{5}}\)
\(=360^{\sqrt{5}+1}\cdot\left(20\cdot18\right)^{3-\sqrt{5}}\)
\(=360^{\sqrt{5}+1}\cdot360^{3-\sqrt{5}}=360^{\sqrt{5}+1+3-\sqrt{5}}=360^4\)
g: \(G=2023^{3+2\sqrt{2}}\cdot2023^{2\sqrt{2}-3}\)
\(=2023^{3+2\sqrt{2}+2\sqrt{2}-3}\)
\(=2023^{4\sqrt{2}}\)
\({\left[ {{{\left( {\frac{1}{3}} \right)}^2}} \right]^{\frac{1}{4}}}.{\left( {\sqrt 3 } \right)^5} = {\left( {\frac{1}{3}} \right)^{2.\frac{1}{4}}}.{\left( {{3^{\frac{1}{2}}}} \right)^5} = {\left( {{3^{ - 1}}} \right)^{\frac{1}{2}}}{.3^{\frac{1}{2}.5}} = {3^{ - \frac{1}{2}}}{.3^{\frac{5}{2}}} = {3^{ - \frac{1}{2} + \frac{5}{2}}} = {3^2} = 9\)
Chọn D.
Theo công thức tổng CSN:
\(1+\frac{2}{3}+...+\left(\frac{2}{3}\right)^n=\frac{1-\left(\frac{2}{3}\right)^{n+1}}{1-\frac{2}{3}}=3-3.\left(\frac{2}{3}\right)^{n+1}\)
\(1+\frac{1}{5}+...+\left(\frac{1}{5}\right)^n=\frac{1-\left(\frac{1}{5}\right)^{n+1}}{1-\frac{1}{5}}=\frac{5}{4}-\frac{5}{4}\left(\frac{1}{5}\right)^{n+1}\)
\(\Rightarrow lim\frac{3-3\left(\frac{2}{3}\right)^{n+1}}{\frac{5}{4}-\frac{5}{4}\left(\frac{1}{5}\right)^{n+1}}=\frac{3}{\frac{5}{4}}=\frac{12}{5}\)
Ta có:
a) \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha \sin \frac{\pi }{6} = \frac{{\sqrt 6 }}{3}.\frac{{\sqrt 3 }}{2} + \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{1}{2} = \frac{{ - \sqrt 3 + 3\sqrt 2 }}{6}\)
b) \(\cos \left( {\alpha + \frac{\pi }{6}} \right) = \cos \alpha .\cos \frac{\pi }{6} - \sin \alpha \sin \frac{\pi }{6} = \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} - \frac{{\sqrt 6 }}{3}.\frac{1}{2} = - \frac{{3 + \sqrt 6 }}{6}\)
c) \(\sin \left( {\alpha - \frac{\pi }{3}} \right) = \sin \alpha \cos \frac{\pi }{3} - \cos \alpha \sin \frac{\pi }{3} = \frac{{\sqrt 6 }}{3}.\frac{1}{2} - \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} = \frac{{3 + \sqrt 6 }}{6}\)
d) \(\cos \left( {\alpha - \frac{\pi }{6}} \right) = \cos \alpha \cos \frac{\pi }{6} + \sin \alpha \sin \frac{\pi }{6} = \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} + \frac{{\sqrt 6 }}{3}.\frac{1}{2} = \frac{{ - 3 + \sqrt 6 }}{6}\)
\(M=\left(\dfrac{1}{3}\right)^{12}\cdot\left(\dfrac{1}{3}\right)^{-15}+\left(\dfrac{2}{5}\right)^{-4}\cdot5^{-4}\cdot32\)
\(=\left(\dfrac{1}{3}\right)^{-3}+2^{-4}\cdot32\)
\(=27+\dfrac{32}{16}=27+2=29\)