K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2016

Giải:

Ta có nhận xét:

\(\frac{1}{1.2}-\frac{1}{2.3}=\frac{3-1}{1.2.3}=\frac{2}{1.2.3}\)

\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{4-2}{2.3.4}=\frac{2}{2.3.4}\)

=>\(\frac{1}{1.2.3}=\frac{1}{3}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)\)

\(\frac{1}{2.3.4}=\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)\)

Do đó M=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}-\frac{1}{11.12}\right)\)

=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{11.12}\right)=\frac{1}{2}-\frac{1}{11.12}\)

=\(\frac{1}{2}.\frac{65}{132}=\frac{65}{124}\)

Vậy M=65/124

19 tháng 5 2016

M=\(\frac{65}{124}\)

10 tháng 8 2016

M = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/10.11.12

M = 1/2.(2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ... + 2/10.11.12)

M = 1/2.(1/1.2 - 1/2.3 + 1/2.3- 1/3.4 + 1/3.4 - 1/4.5 + ... + 1/10.11 - 1/11.12)

M = 1/2.(1/1.2 - 1/11.12)

M = 1/4 - 1/264

M = 65/264

9 tháng 3 2017

M=65/264.

28 tháng 7 2017

\(M=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{10.11}-\frac{1}{11.12}\right)\)

\(M=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{11.12}\right)\)

\(M=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{132}\right)\)

6 tháng 3 2019

\(D=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{10\cdot11\cdot12}\)

\(D=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{10\cdot11\cdot12}\right)\)

\(D=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{10\cdot11}-\frac{1}{11\cdot12}\right)\)

\(D=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{132}\right)=...\)

6 tháng 3 2019

\(D=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{10.11.12}\)

\(D=\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{10.11.12}\right).\frac{1}{2}\)

\(D=\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{10.11}-\frac{1}{11.12}\right).\frac{1}{2}\)

\(D=\left(\frac{1}{1.2}-\frac{1}{11.12}\right).\frac{1}{2}\)

\(D=\frac{65}{132}.\frac{1}{2}\)

\(D=\frac{65}{264}\)

18 tháng 2 2016

2A=2(1/1.2.3+1/2.3.4+...+1/98.99.100)

2A=1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-...+1/98.99-1/99.100

2A=1/1.2-1/99.100

2A=4949/9900

A=4949/9900:2

A=4949/19800

                                         Vậy A=4949/198000

9 tháng 3 2021

Lưu Trường An làm đúng rồi

26 tháng 4 2016

\(2M=2\cdot\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+.....+\frac{1}{10\cdot11\cdot12}\right)\)

\(2M=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+.....+\frac{2}{10\cdot11\cdot12}\)

\(2M=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+.....+\frac{1}{10\cdot11}-\frac{1}{11\cdot12}\)

\(2M=\frac{1}{1\cdot2}-\frac{1}{11\cdot12}\)

\(2M=\frac{1}{2}-\frac{1}{132}\)

\(2M=\frac{66}{132}-\frac{1}{132}\)

\(2M=\frac{65}{132}\)

\(M=\frac{65}{132}:2\)

\(M=\frac{65}{264}\)

4 tháng 3 2020

Ta có : \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)

\(\Leftrightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{18.19.20}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{18.19}-\frac{1}{19.20}\)

\(=\frac{1}{2}-\frac{1}{19.20}=\frac{189}{380}\)

\(\Rightarrow B=\frac{189}{760}\)

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{380}\right)\)

\(=\frac{1}{2}.\frac{189}{380}=\frac{189}{760}\)

20 tháng 3 2018

Ta có :

\(\dfrac{1}{1.2}-\dfrac{1}{2.3}=\dfrac{3}{1.2.3}-\dfrac{1}{1.2.3}=\dfrac{2}{1.2.3}\)

\(\dfrac{1}{2.3}-\dfrac{1}{3.4}=\dfrac{4}{2.3.4}-\dfrac{2}{2.3.4}=\dfrac{2}{2.3.4}\)

...

Do đó :

\(\dfrac{1}{1.2.3}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)\)

\(\dfrac{1}{2.3.4}=\dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)\)

Vậy :

\(M=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{132}\right)\)

\(=\dfrac{1}{2}.\dfrac{65}{132}=\dfrac{65}{264}\)

21 tháng 3 2016

=\(\frac{65}{264}\)

21 tháng 3 2016

65/264 k cho mình nhé

22 tháng 3 2019

Xét ct trước :D

\(\frac{2}{\left[\left(n-1\right)n\left(n+1\right)\right]}=\frac{1}{\left[\left(n-1\right)n\right]}-\frac{1}{\left[n\left(n+1\right)\right]}\)

Sau khi xét ct rồi thì /Bùm/ Ta được: 

\(2M=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{10.11.12}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{10.11}+\frac{1}{11.12}\)

\(=\frac{1}{1.2}-\frac{1}{11.12}\)

\(=\frac{65}{132}\)

\(\Rightarrow M=\frac{65}{264}\)

Ok rồi nhé :)