Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để A có giá trị bằng 1
suy ra 3 phải chia hết cho n-1
suy ra n-1 \(\in\)Ư(3)={1,3 }
TH1 n-1=1\(\Rightarrow\)n=1+1=2
TH2 n-1=3\(\Rightarrow\)n=3+1=4
Vậy n = 2 hoặc n =4
a) để biểu thức A có giá trị = 1 suy ra 3:n-1=1 suy ra n-1=3
n=4
b) để A là số nguyên tố suy ra 3:n-1 là số nguyên dương
từ trên suy ra n-1=1 hoặc 3
nếu n-1=1 suy ra n =2 3/n-1=3 là snt
nếu n-1=3 suy ra 3/n-1=3/3=1 loại vì ko là snt
\(M=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{10.11}-\frac{1}{11.12}\right)\)
\(M=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{11.12}\right)\)
\(M=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{132}\right)\)
Giải:
Ta có nhận xét:
\(\frac{1}{1.2}-\frac{1}{2.3}=\frac{3-1}{1.2.3}=\frac{2}{1.2.3}\)
\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{4-2}{2.3.4}=\frac{2}{2.3.4}\)
=>\(\frac{1}{1.2.3}=\frac{1}{3}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)\)
\(\frac{1}{2.3.4}=\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)\)
Do đó M=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}-\frac{1}{11.12}\right)\)
=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{11.12}\right)=\frac{1}{2}-\frac{1}{11.12}\)
=\(\frac{1}{2}.\frac{65}{132}=\frac{65}{124}\)
Vậy M=65/124
\(D=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{10\cdot11\cdot12}\)
\(D=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{10\cdot11\cdot12}\right)\)
\(D=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{10\cdot11}-\frac{1}{11\cdot12}\right)\)
\(D=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{132}\right)=...\)
\(D=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{10.11.12}\)
\(D=\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{10.11.12}\right).\frac{1}{2}\)
\(D=\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{10.11}-\frac{1}{11.12}\right).\frac{1}{2}\)
\(D=\left(\frac{1}{1.2}-\frac{1}{11.12}\right).\frac{1}{2}\)
\(D=\frac{65}{132}.\frac{1}{2}\)
\(D=\frac{65}{264}\)
M = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/10.11.12
M = 1/2.(2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ... + 2/10.11.12)
M = 1/2.(1/1.2 - 1/2.3 + 1/2.3- 1/3.4 + 1/3.4 - 1/4.5 + ... + 1/10.11 - 1/11.12)
M = 1/2.(1/1.2 - 1/11.12)
M = 1/4 - 1/264
M = 65/264
\(2M=2\cdot\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+.....+\frac{1}{10\cdot11\cdot12}\right)\)
\(2M=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+.....+\frac{2}{10\cdot11\cdot12}\)
\(2M=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+.....+\frac{1}{10\cdot11}-\frac{1}{11\cdot12}\)
\(2M=\frac{1}{1\cdot2}-\frac{1}{11\cdot12}\)
\(2M=\frac{1}{2}-\frac{1}{132}\)
\(2M=\frac{66}{132}-\frac{1}{132}\)
\(2M=\frac{65}{132}\)
\(M=\frac{65}{132}:2\)
\(M=\frac{65}{264}\)
Xét ct trước :D
\(\frac{2}{\left[\left(n-1\right)n\left(n+1\right)\right]}=\frac{1}{\left[\left(n-1\right)n\right]}-\frac{1}{\left[n\left(n+1\right)\right]}\)
Sau khi xét ct rồi thì /Bùm/ Ta được:
\(2M=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{10.11.12}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{10.11}+\frac{1}{11.12}\)
\(=\frac{1}{1.2}-\frac{1}{11.12}\)
\(=\frac{65}{132}\)
\(\Rightarrow M=\frac{65}{264}\)
Ok rồi nhé :)