K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)

\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{99}+\frac{99}{99}\right)\)

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}=\frac{100}{2}=50\)

Vậy \(A=50\).

\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)

\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}=\frac{3.4.5.....100}{2.3.4.....99}\)

\(\Leftrightarrow A=\frac{100}{2}=50\)

7 tháng 5 2017

\(A=\frac{3}{2}.\frac{4}{3}....\frac{100}{99}=\frac{100}{2}=50\)

7 tháng 5 2017

\(A=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times...\times\frac{99}{98}\times\frac{100}{99}\)

Vì phép nhân có thể rút gọn được

\(\Rightarrow A=\frac{100}{2}=50\)

Vậy A = 50

24 tháng 1 2018

\(B=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{98^2}-1\right)\left(\frac{1}{99^2}-1\right)\)

\(=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right).....\left(1-\frac{1}{98^2}\right)\left(1-\frac{1}{99^2}\right)\)

\(=\frac{3}{2^2}.\frac{8}{3^2}......\frac{9603}{98^2}.\frac{9800}{99^2}\)

\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.....\frac{97.99}{98^2}.\frac{98.100}{99^2}\)

\(=\frac{1.2.4...97.98}{2.3....98.99}.\frac{3.4...99.100}{2.3....98.99}\)

\(=\frac{1}{99}.\frac{100}{2}\)

\(=\frac{50}{99}\)

24 tháng 1 2018

bn viết sai 1 chỗ nhưng ko s ^^ tks nhoa 

9 tháng 4 2019

\(\left(\frac{1}{2}-1\right):\left(\frac{1}{3}-1\right):\left(\frac{1}{4}-1\right):...:\left(\frac{1}{100}-1\right)\)

\(=\frac{-1}{2}:\frac{-2}{3}:\frac{-3}{4}:...:\frac{-98}{99}:\frac{-99}{100}\)

\(=\frac{-1\cdot3\cdot4\cdot...\cdot99\cdot100}{2\cdot\left(-2\right)\cdot\left(-3\right)\cdot...\cdot\left(-98\right)\cdot\left(-99\right)}\)

\(=\frac{\left(-1\right)^{99}\cdot100}{2\cdot\left(-2\right)}=\frac{-1\cdot100}{-4}=\frac{-100}{4}=-25\)

- P/s: Không chắc chắn nhé!

10 tháng 5 2018

A =(1/2 +1)×(1/3 +1)×(1/4 +1)×....×(1/99 +1)

=3/2x4/3x...............x100/99

=2-1/99

=197/99

10 tháng 5 2018

A= \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot.....\cdot\frac{100}{99}\)

A=\(\frac{\left(3\cdot4\cdot5\cdot....\cdot99\right)\cdot100}{2\cdot\left(3\cdot4\cdot5\cdot...\cdot99\right)}\)

A=\(\frac{100}{2}=50\)

\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)

\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

=> \(\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)>\(\frac{32}{100}\)=32%

15 tháng 8 2019

\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdot\cdot\cdot\left(1-\frac{1}{n^2}\right)\)

\(\Rightarrow A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\cdot\cdot\cdot\left(1-\frac{1}{n^2}\right)\)

\(\Rightarrow A=\frac{3}{4}\cdot\frac{8}{9}\cdot\cdot\cdot\frac{n^2-1}{n^2}\)

\(\Rightarrow A=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\cdot\cdot\frac{\left(n-1\right)\left(n+1\right)}{n\cdot n}\)

\(\Rightarrow A=\frac{\left(1\cdot3\right)\cdot\left(2\cdot4\right)\cdot\cdot\cdot\left[\left(n-1\right)\left(n+1\right)\right]}{\left(2\cdot2\right)\cdot\left(3\cdot3\right)\cdot\cdot\cdot\left(n\cdot n\right)}\)

\(\Rightarrow A=\frac{\left[1\cdot2\cdot\cdot\cdot\cdot\cdot\left(n-1\right)\right]\cdot\left[3\cdot4\cdot\cdot\cdot\cdot\cdot\left(n+1\right)\right]}{\left(2\cdot3\cdot\cdot\cdot\cdot\cdot n\right)\cdot\left(2\cdot3\cdot\cdot\cdot\cdot\cdot n\right)}\)

\(\Rightarrow A=\frac{1\cdot\left(n+1\right)}{n\cdot2}\)

\(\Rightarrow A=\frac{n+1}{2n}\)

15 tháng 8 2019

A=(1-1/2^2)(1-1/3^2).....(1-1/n^2)

A=1(1/2^2-1/3^2-...-1/n^2)

......

xin lỗi bạn nha mình phải tắt máy rồi bạn cố gắng suy nghĩ tiếp nha

3 tháng 10 2016

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}\)

\(=\frac{1}{100}\)

3 tháng 10 2016

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{100}\right)\)

Đặt : \(A=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{100}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{99}{100}\)

\(A=\frac{1.2.3.4.....99}{2.3.4.5.....100}\)

\(A=\frac{1}{100}\)

Vậy : \(A=\frac{1}{100}\)

23 tháng 5 2017

\(\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right)\left(1-1\frac{1}{7}\right)...\left(1-1\frac{3}{7}\right)\)

\(=\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-1\frac{1}{7}\right)...\left(1-1\frac{3}{7}\right)\left(1-1\right)\)

\(=\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-1\frac{3}{7}\right).0\)

\(=0\)

23 tháng 5 2017

Trong dãy nhất định có \(\left[1-\frac{7}{7}\right]=0\)nên tích dãy trên là 0