K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2016

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}\)

\(=\frac{1}{100}\)

3 tháng 10 2016

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{100}\right)\)

Đặt : \(A=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{100}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{99}{100}\)

\(A=\frac{1.2.3.4.....99}{2.3.4.5.....100}\)

\(A=\frac{1}{100}\)

Vậy : \(A=\frac{1}{100}\)

15 tháng 8 2019

\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdot\cdot\cdot\left(1-\frac{1}{n^2}\right)\)

\(\Rightarrow A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\cdot\cdot\cdot\left(1-\frac{1}{n^2}\right)\)

\(\Rightarrow A=\frac{3}{4}\cdot\frac{8}{9}\cdot\cdot\cdot\frac{n^2-1}{n^2}\)

\(\Rightarrow A=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\cdot\cdot\frac{\left(n-1\right)\left(n+1\right)}{n\cdot n}\)

\(\Rightarrow A=\frac{\left(1\cdot3\right)\cdot\left(2\cdot4\right)\cdot\cdot\cdot\left[\left(n-1\right)\left(n+1\right)\right]}{\left(2\cdot2\right)\cdot\left(3\cdot3\right)\cdot\cdot\cdot\left(n\cdot n\right)}\)

\(\Rightarrow A=\frac{\left[1\cdot2\cdot\cdot\cdot\cdot\cdot\left(n-1\right)\right]\cdot\left[3\cdot4\cdot\cdot\cdot\cdot\cdot\left(n+1\right)\right]}{\left(2\cdot3\cdot\cdot\cdot\cdot\cdot n\right)\cdot\left(2\cdot3\cdot\cdot\cdot\cdot\cdot n\right)}\)

\(\Rightarrow A=\frac{1\cdot\left(n+1\right)}{n\cdot2}\)

\(\Rightarrow A=\frac{n+1}{2n}\)

15 tháng 8 2019

A=(1-1/2^2)(1-1/3^2).....(1-1/n^2)

A=1(1/2^2-1/3^2-...-1/n^2)

......

xin lỗi bạn nha mình phải tắt máy rồi bạn cố gắng suy nghĩ tiếp nha

14 tháng 8 2020

\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)

\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{99}+\frac{99}{99}\right)\)

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}=\frac{100}{2}=50\)

Vậy \(A=50\).

\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)

\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}=\frac{3.4.5.....100}{2.3.4.....99}\)

\(\Leftrightarrow A=\frac{100}{2}=50\)

23 tháng 5 2017

\(\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right)\left(1-1\frac{1}{7}\right)...\left(1-1\frac{3}{7}\right)\)

\(=\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-1\frac{1}{7}\right)...\left(1-1\frac{3}{7}\right)\left(1-1\right)\)

\(=\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-1\frac{3}{7}\right).0\)

\(=0\)

23 tháng 5 2017

Trong dãy nhất định có \(\left[1-\frac{7}{7}\right]=0\)nên tích dãy trên là 0

21 tháng 3 2018

\(A=\frac{1}{2}:\frac{4}{3}:\frac{-5}{4}:\frac{6}{5}:...:\frac{-101}{100}\) 

<=> \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{-4}{5}\cdot\frac{5}{6}\cdot...\cdot\frac{-100}{101}\)

Trong biểu thức  A có số số âm là (100-4):2 + 1 =49 số

Vậy A là số âm => \(A=-\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{100}{101}\right)\)

=> \(A=-\left(\frac{1}{2}\cdot\frac{3}{101}\right)=\frac{-3}{202}\)

21 tháng 3 2018

thanks bn nhiều nha Hiếu

22 tháng 3 2018

\(Q=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{100}\right)\)

\(Q=\left(\frac{1}{2}\right).\left(\frac{2}{3}\right).\left(\frac{3}{4}\right)...\left(\frac{99}{100}\right)\)

\(Q=\frac{1}{100}\)

\(P=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{99.101}\right)\)

\(P=\left(\frac{1.3}{1.3}+\frac{1}{1.3}\right)\left(\frac{2.4}{2.4}+\frac{1}{2.4}\right)\left(\frac{3.5}{3.5}+\frac{1}{3.5}\right)...\left(\frac{99.101}{99.101}+\frac{1}{99.101}\right)\)

\(P=\left(\frac{4}{1.3}\right)\left(\frac{9}{2.4}\right)\left(\frac{16}{3.5}\right)...\left(\frac{10000}{99.101}\right)\)

\(P=\left(\frac{2^2}{1.3}\right)\left(\frac{3^2}{2.4}\right)\left(\frac{4^2}{3.5}\right)...\left(\frac{100^2}{99.101}\right)\)

Bạn tự tách ra rồi bạn sẽ ra kết quả như ở dưới

\(P=\frac{201}{100}\)

25 tháng 2 2020

D = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1.\right)\)

=>\(-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{100^2}.\right)\)

=>\(-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{100^2-1}{100^2}\)

=>\(-\left(\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}....\frac{99.101}{100^2}\right)\)

=>\(-\left(\frac{1.2.3...99}{2.3.4....100}\right)\left(\frac{3.4.5....101}{2.3.4....100}\right)\)

=>\(-\left(\frac{1}{100}.\frac{101}{2}\right)\)

=>\(D=-\frac{101}{200}\)