Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(.\)M= bn ghi lại đề nha ^.^
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left[\left(a^2+2ab+b^2\right)-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=1^3-3ab.1+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2.1\)
\(=1-3ab+3ab\left(1-2ab\right)+6a^2b^2\)
\(M=1-3ab+3ab-6a^2b^2+6a^2b^2\)\(=1\)
k cho mình nha bn thanks nhìu <3 <3 (^3^)
2. \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)(1)
Đặt \(x^2+5x+4=t\)
(1) = \(t.\left(t+2\right)-24\)
\(=t^2+2t+1-25\)
\(=\left(t+1\right)^2-25\)
\(=\left(t+1-5\right)\left(t+1+5\right)\)
\(=\left(t-4\right)\left(t+6\right)\)(2)
Thay \(t=x^2+5x+4\)vào (2) ta có:
(2) = \(\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
k mình nha bn <3 thanks
c) \(C=\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)\left[\left(a+b\right)^2-ab\right]=3\left(9^2-ab\right)\)
\(\left(a+b\right)^2=81\Leftrightarrow a^2+2ab+b^2=81\Leftrightarrow a^2+b^2=81-2ab\)
\(\left(a-b\right)^2=9\Leftrightarrow a^2+b^2=9+2ab\)
=> \(81-2ab=9+2ab\Rightarrow4ab=72\Leftrightarrow ab=18\)
\(\Leftrightarrow C=3\left(81-18\right)=189\)
\(D=\left(x^2+2xy+y^2\right)-4\left(x+y+1\right)\)
\(D=\left(x+y\right)^2-4.4=3^2-16=9-16=-7\)
1,Tính giá trị của biểu thức:
a,A=2.(x3-y3)-3.(x+y)2 với x-y=2
b,B=x3-3xy.(x-y)-y3-x2+2xy-y2 với x-y=7
Ta có x3 + y3
= (x + y)(x2 - xy + y2)
= (x + y)(x2 + 2xy + y2) - 3xy(x + y)
= (x + y)3 - 6xy
= 23 - 6xy
= 8 - 6xy
Lại có x + y = 2
=> (x + y)2 = 4
=> x2 + y2 + 2xy = 4
=> 2xy = -6
=> xy = -3
Khi đó x3 - y3 = 8 + 6.3 = 26
b) a + b = 7
=> a = 7 - b
Khi đó ab = 12
<=> (7 - b).b = 12
=> 7b - b2 = 12
=> 7b - b2 - 12 = 0
=> -(b2 - 7b + 12) = 0
=> b2 - 4b - 3b + 12 = 0
=> b(b - 4) - 3(b - 4) = 0
=> (b - 3)(b - 4) = 0
=> \(\orbr{\begin{cases}b=3\\b=4\end{cases}}\)
Khi b = 3 => a = 4
Khi b = 4 => a = 3
+) b = 3 ; a = 4 => B = (3 - 4)2009 = -1
+) b = 4 ; a = 3 => B = (4 - 3)2009 = 1
c) Ta có a3 - b3 = (a - b)(a2 + ab + b2)
= (a - b)(a2 - 2ab + b2) + 3ab(a - b)
= (a - b)3 + 3ab(a - b)
= 27 + 9ab
Lại có \(\hept{\begin{cases}a+b=9\\a-b=3\end{cases}}\Rightarrow\hept{\begin{cases}a=6\\b=3\end{cases}}\)
Khi đó C = 27 + 9.6.3 = 27 + 162 = 189
1/Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)
\(\Rightarrow M=ab+bc+ca=\frac{\left(81-141\right)}{2}\)
M = x3( x2 - y2 ) + y2( x3 - y3 )
= x5 - x3y2 + x3y2 - y5
= x5 - y5
| y | = 1 => y = ±1
Rồi bạn xét hai trường hợp x = 2 ; y = 1 và x = 2 ; y = -1 nhé
b) N = AB
= ( -2x2 + 3x + 5 )( x2 - x + 3 )
= -2x4 + 2x3 - 6x2 + 3x3 - 3x2 + 9x + 5x2 - 5x + 15
= -2x4 + 5x3 - 4x2 + 4x + 15
| x | = 2 => x = ±2
Rồi bạn thế vô
Good luck
\(M=x^3\left(x^2-y^2\right)+y^2\left(x^3-y^3\right)\)
\(=x^5-x^3y^2+x^3y^2-y^5\)
\(=x^5-y^5\)
\(|y|=1\Rightarrow y=1\text{hoặc}y=-1\)
TH1: x=2;y=-1Ta có M=1 +1=2
TH2: tại x=2;y=1 ta có: M= 1-1=0
b)\(N=\left(-2x^2+3x+5\right)\left(x^2-x+3\right)\)
\(=-2^4+5x^3-4x^2+4x+15\)
\(|x|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
\(\text{Tại x=2 thì }M=-16+40-16+8+15=31\)
\(\text{ Tại x=-2 thì }M=-16-40-16-8+15=-65\)
Ta có :
\(x+y=2\)
\(\Rightarrow\left(x+y\right)^2=2^2\)
\(x^2+y^2+2xy=4\)
\(\Rightarrow10+2xy=4\)
\(\Rightarrow2xy=-6\)
\(\Rightarrow xy=-3\)
\(\Rightarrow A=x^3+y^3\)
\(=\left(x+y\right)\left(x^2+y^2-xy\right)\)
\(=2.\left[10-\left(-3\right)\right]\)
\(=2.13\)
\(=26\)
Vậy A = 26 .
Ta có : x^2 + y^2 = (x + y)^2 - 2xy = 2^2 - 2xy = 4 - 2xy = 10
=> 2xy = -6 => xy = -3
Ta có : x^3 + y^3 = (x + y)(x^2 + xy + y^2) = 2 (-3 + 10) = 2*7 = 14
Nhớ T I C K cho mình nghen !!!!!!!