K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

Ta có :

\(x+y=2\)

\(\Rightarrow\left(x+y\right)^2=2^2\)

\(x^2+y^2+2xy=4\)

\(\Rightarrow10+2xy=4\)

\(\Rightarrow2xy=-6\)

\(\Rightarrow xy=-3\)

\(\Rightarrow A=x^3+y^3\)

\(=\left(x+y\right)\left(x^2+y^2-xy\right)\)

\(=2.\left[10-\left(-3\right)\right]\)

\(=2.13\)

\(=26\)

Vậy A = 26 .

13 tháng 8 2016

Ta có : x^2 + y^2 = (x + y)^2 - 2xy = 2^2 - 2xy = 4 - 2xy = 10

=> 2xy = -6 => xy = -3

Ta có : x^3 + y^3 = (x + y)(x^2 + xy + y^2) = 2 (-3 + 10) = 2*7 = 14

Nhớ T I C K cho mình nghen !!!!!!!

2 tháng 9 2017

\(.\)M= bn ghi lại đề nha ^.^

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left[\left(a^2+2ab+b^2\right)-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=1^3-3ab.1+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2.1\)

\(=1-3ab+3ab\left(1-2ab\right)+6a^2b^2\)

\(M=1-3ab+3ab-6a^2b^2+6a^2b^2\)\(=1\)

k cho mình nha bn thanks nhìu <3 <3       (^3^)

2 tháng 9 2017

2. \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)(1)

Đặt \(x^2+5x+4=t\)

(1) = \(t.\left(t+2\right)-24\)

\(=t^2+2t+1-25\)

\(=\left(t+1\right)^2-25\)

\(=\left(t+1-5\right)\left(t+1+5\right)\)

\(=\left(t-4\right)\left(t+6\right)\)(2)

Thay \(t=x^2+5x+4\)vào (2) ta có:

(2) = \(\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)\(=x\left(x+5\right)\left(x^2+5x+10\right)\)

k mình nha bn <3 thanks

7 tháng 6 2015

c) \(C=\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)\left[\left(a+b\right)^2-ab\right]=3\left(9^2-ab\right)\)

\(\left(a+b\right)^2=81\Leftrightarrow a^2+2ab+b^2=81\Leftrightarrow a^2+b^2=81-2ab\)

\(\left(a-b\right)^2=9\Leftrightarrow a^2+b^2=9+2ab\)

=> \(81-2ab=9+2ab\Rightarrow4ab=72\Leftrightarrow ab=18\)

\(\Leftrightarrow C=3\left(81-18\right)=189\)

21 tháng 7 2016

\(D=\left(x^2+2xy+y^2\right)-4\left(x+y+1\right)\)

\(D=\left(x+y\right)^2-4.4=3^2-16=9-16=-7\)

24 tháng 9 2020

Ta có x3 + y3

= (x + y)(x2 - xy + y2)

= (x + y)(x2 + 2xy + y2) - 3xy(x  + y)

= (x + y)3 - 6xy 

= 23 - 6xy

= 8 - 6xy

Lại có x + y = 2

=> (x + y)2 = 4

=> x2 + y2 + 2xy = 4

=> 2xy = -6

=> xy = -3

Khi đó x3 - y3 = 8 + 6.3 = 26

b) a + b = 7

=> a = 7 - b

Khi đó ab = 12

<=> (7 - b).b = 12

=> 7b - b2 = 12

=> 7b - b2 - 12 = 0

=> -(b2 - 7b + 12) = 0

=> b2 - 4b - 3b + 12 = 0

=> b(b - 4) - 3(b - 4) = 0

=> (b - 3)(b - 4) = 0

=> \(\orbr{\begin{cases}b=3\\b=4\end{cases}}\)

Khi b = 3 => a = 4

Khi b = 4 => a = 3

+) b = 3 ; a = 4 => B = (3 - 4)2009 = -1

+) b = 4 ; a = 3 => B = (4 - 3)2009 = 1

c) Ta có a3 - b3 = (a - b)(a2 + ab + b2)

                         = (a - b)(a2 - 2ab + b2) + 3ab(a - b)

                         = (a - b)3 + 3ab(a - b)

                          = 27 + 9ab

Lại có \(\hept{\begin{cases}a+b=9\\a-b=3\end{cases}}\Rightarrow\hept{\begin{cases}a=6\\b=3\end{cases}}\)

Khi đó C = 27 + 9.6.3 = 27 + 162 = 189

Bài 1: a) Cho a + b + c = 9, a2 + b2 + c2 = 141. Tính giá trị biểu thức M = ab + bc + cab) Cho x + y = 1. Tính giá trị của biểu thức B = x3 + 3xy + y3c) Cho x + y = a; x2 + y2 = b, x3 + y3 = c. Tính giá trị của biểu thức N = a3 - 3ab + 2cd) Cho x + y = a, x - y = b. Tính giá trị của biểu thức D = x3 - y3 theo a và be) Cho x + y = a, x2 + y2 = b. Tính giá trị của biểu thức E = x3 + y3 theo a và bf) Cho x + y = 1, xy= -1. Tính...
Đọc tiếp

Bài 1: 
a) Cho a + b + c = 9, a+ b+ c= 141. Tính giá trị biểu thức M = ab + bc + ca
b) Cho x + y = 1. Tính giá trị của biểu thức B = x3 + 3xy + y3
c) Cho x + y = a; x2 + y= b, x+ y= c. Tính giá trị của biểu thức N = a3 - 3ab + 2c
d) Cho x + y = a, x - y = b. Tính giá trị của biểu thức D = x- ytheo a và b
e) Cho x + y = a, x+ y= b. Tính giá trị của biểu thức E = x3 + ytheo a và b
f) Cho x + y = 1, xy= -1. Tính giá trị của các biểu thức x+ y2 , x+ y3 , (x2 - y2)2 , x+ y6
g) Cho x - y = 2, xy = 1. Tính giá trị của các biểu thức x+ y2, x3 - y3, (x2- y2)2, x- y6
h) Cho a + b + c = 0, a2+ b+ c= 1. Tính giá trị của biểu thức H = a+ b+ c4
i) Cho a + b = a+ b=1. Chứng minh: a+ b= a4+ b4
j) Cho x + y = a + b; x+ y= a+ b2. CMR: x2000+ y2000 = a2000+ b2000
k) Cho a+ b= 1; c+ d= 1; ac + bd = 0. CMR: ab + cd = 0 
 

3
21 tháng 10 2018

1/Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)

\(\Rightarrow M=ab+bc+ca=\frac{\left(81-141\right)}{2}\)

26 tháng 9 2020

a,\(a+b+c=9\)

\(\Rightarrow\left(a+b+c\right)^2=81\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=81\)

Vì \(a^2+b^2+c^2=141\)

\(\Rightarrow2ab+2bc+2ca=-60\)

\(\Rightarrow2\left(ab+bc+ca\right)=-60\)

\(\Rightarrow ab+bc+ca=-30\)

Vậy ...

18 tháng 9 2020

M = x3( x2 - y2 ) + y2( x3 - y3 )

= x5 - x3y2 + x3y2 - y5

= x5 - y5

| y | = 1 => y = ±1

Rồi bạn xét hai trường hợp x = 2 ; y = 1 và x = 2 ; y = -1 nhé

b) N = AB

= ( -2x2 + 3x + 5 )( x2 - x + 3 )

= -2x4 + 2x3 - 6x2 + 3x3 - 3x2 + 9x + 5x2 - 5x + 15

= -2x4 + 5x3 - 4x2 + 4x + 15

| x | = 2 => x = ±2

Rồi bạn thế vô

Good luck

\(M=x^3\left(x^2-y^2\right)+y^2\left(x^3-y^3\right)\)

     \(=x^5-x^3y^2+x^3y^2-y^5\)

       \(=x^5-y^5\)

\(|y|=1\Rightarrow y=1\text{hoặc}y=-1\)

TH1: x=2;y=-1Ta có M=1 +1=2

 TH2: tại x=2;y=1 ta có: M= 1-1=0

b)\(N=\left(-2x^2+3x+5\right)\left(x^2-x+3\right)\)

         \(=-2^4+5x^3-4x^2+4x+15\)

\(|x|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

\(\text{Tại x=2 thì }M=-16+40-16+8+15=31\)

\(\text{ Tại x=-2 thì }M=-16-40-16-8+15=-65\)