K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

\(\frac{2}{5}:\frac{1}{3}-\frac{2}{15}:\frac{1}{5}+\frac{3}{5}.\frac{1}{3}\)

\(=\frac{6}{5}+\frac{-2}{3}+\frac{1}{5}\)

\(=\frac{11}{15}\)

~ Hok tốt ~

7 tháng 5 2019

\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)

\(=4.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2008.2010}\right)\)

\(=4.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)

\(=4.\left[\frac{1}{2}+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{6}-\frac{1}{6}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+...+\left(\frac{1}{2008}-\frac{1}{2008}\right)-\frac{1}{2010}\right]\)

\(=4.\left[\frac{1}{2}-\frac{1}{2010}\right]\)

\(=4.\frac{502}{1005}=\frac{2008}{1005}\)

~ Hok tốt ~

a: \(=\dfrac{2}{15}-\dfrac{2}{15}\cdot5+\dfrac{3}{15}=\dfrac{2-10+3}{15}=\dfrac{-5}{15}=\dfrac{-1}{3}\)

b: \(=\left(6+\dfrac{1}{8}-\dfrac{1}{2}\right)\cdot4=\dfrac{48+1-4}{8}\cdot4=\dfrac{45}{2}\)

c: \(=\dfrac{1}{4}\cdot4-2\cdot\dfrac{1}{4}=1-\dfrac{1}{2}=\dfrac{1}{2}\)

d: \(F=2\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2008\cdot2010}\right)\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)

\(=2\cdot\dfrac{1004}{2010}=\dfrac{1004}{1005}\)

6 tháng 4 2016

F=2\ 2/2.4+2/4.6+2/6.8+.....+2/2008.2010  \

  =2  \ 1/2-1/4+1/4-1/6+1/6-1/8+.....+1/2008-1/2010  \

  =2   \ 1/2-1/2010 \ =2  \  502/1005  \  =1004/1005

chú ý : \ là ngoặc 

Ta có : D = \(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+.....+\frac{4}{2008.2010}\)

\(\Leftrightarrow D=2\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{2008.2010}\right)\)

\(\Leftrightarrow D=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2008}-\frac{1}{2010}\right)\)

\(\Leftrightarrow D=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)

\(\Leftrightarrow D=1-\frac{1}{1005}=\frac{1004}{1005}\)

4 tháng 4 2018

D = 2.(2/2.4+2/4.6+...+2/2008.2010)

=2(1/2-1/4+1/4-1/6+......+1/2008-1/2

=2(1/2-1/2010)

=2.502/1005

=1004/1005

A=3n+1/n-1=3(n-1)+4/n-1=3+4/n-1

Để A là số nguyên thì 4/n-1 là số nguyên

=>n-1 thuộc Ư(4)=1,-1,2,-2,4,-4

=>n thuộc (2,0,3,-1,5,-3)

Ta có : \(A=\frac{3n+2}{n-1}+\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\)

Để A có giá trị nguyên thì n - 1 thuộc Ư(5) = {-1;-5;1;5}

n - 1-5-115
n-4026
A = \(3+\frac{5}{n-1}\)2-284
4 tháng 4 2018

tại sao lại có số 5 vậy bạn?

29 tháng 6 2016

 C=4/2.4+4/4.6+4/6.8+...+4/2008.2010
 C = 2 ( 2 / 2.4 + 2/4.6 + 2/6.8 + ...+2/2008.2010)
 C = 2 ( 1 - 1/4 + 1/4 - 1/6+1/6 - 1/8 +....+1/2008 - 1/2010 )
 C = 2 ( 1 - 1 / 2010 )
 C = 2 . 2009/2010 
 C = 2009 / 1005
Chúc bạn học tốt !

29 tháng 6 2016

bạn tách ra từng bài một mình sẽ giúp 

a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101

    =1-1/101

    =100/101

b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5

    =(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5

    =(1-1/101).2,5

    =100/101.2,5

    =250/101

c) =(2/2.4+2/4.6+2/6.8+...+2/2008-2/2010).2

    =(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010).2

    =(1/2-1/2010).2

    =1004/1005

A=4/2.4+4/4.6+4/6.8+...+4/2008.2010

=2.(2/2.4+2/4.6+2/6.8+...+2/2008.2010)

=2.(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010)

=2.(1/2-1/2010)

=2.502/1005

=1004/1005

Vậy A=1004/1005

29 tháng 4 2015

100% giải đúng đầu tiên:

       Ta có: \(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)

                      \(=2.\frac{2}{2.4}+2.\frac{2}{4.6}+2.\frac{2}{6.8}+...+2.\frac{2}{2008.2010}\)

                      \(=2\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+..+\frac{2}{2008.2010}\right)\)

                      \(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)

                      \(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)

                       \(=2.\frac{1}{2}-2.\frac{1}{2010}\)

                       \(=1-\frac{1}{1005}=\frac{1004}{1005}\)

14 tháng 8 2016

dễ mà bạn làm từ câu a nếu ra thì các câu khác cũng dễ thôi

14 tháng 8 2016

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{2009\cdot2010}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(A=1-\frac{1}{2010}\)

\(A=\frac{2009}{2010}\)

8 tháng 5 2015

 

\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(2A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

\(2A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(2A=\frac{1}{1}-\frac{1}{100}\)

\(2A=\frac{99}{100}\Rightarrow A=\frac{99}{100}:2\Rightarrow A=\frac{99}{200}\)

Câu B và C làm tương tự.

8 tháng 5 2015

bạn Nhi làm sai rồi

\(\frac{2}{2\cdot3}\) sao có thể bằng \(\frac{1}{2}-\frac{1}{3}\) được

\(\frac{1}{2\cdot3}\) mới bằng \(\frac{1}{2}-\frac{1}{3}\)

kết quả là : \(\frac{49}{100}\)