Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\frac{3n+2}{n-1}+\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\)
Để A có giá trị nguyên thì n - 1 thuộc Ư(5) = {-1;-5;1;5}
n - 1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
A = \(3+\frac{5}{n-1}\) | 2 | -2 | 8 | 4 |
\(\frac{2}{5}:\frac{1}{3}-\frac{2}{15}:\frac{1}{5}+\frac{3}{5}.\frac{1}{3}\)
\(=\frac{6}{5}+\frac{-2}{3}+\frac{1}{5}\)
\(=\frac{11}{15}\)
~ Hok tốt ~
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(=4.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2008.2010}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=4.\left[\frac{1}{2}+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{6}-\frac{1}{6}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+...+\left(\frac{1}{2008}-\frac{1}{2008}\right)-\frac{1}{2010}\right]\)
\(=4.\left[\frac{1}{2}-\frac{1}{2010}\right]\)
\(=4.\frac{502}{1005}=\frac{2008}{1005}\)
~ Hok tốt ~
a: \(=\dfrac{3\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4\left(\dfrac{1}{47}-\dfrac{4}{47}+\dfrac{9}{53}\right)}=\dfrac{3}{4}\)
b: \(F=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(=2\cdot\dfrac{1004}{2010}=\dfrac{2008}{2010}=\dfrac{1004}{1005}\)
c: \(S=\dfrac{1}{3\cdot6}+\dfrac{1}{6\cdot9}+...+\dfrac{1}{30\cdot33}\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{10}{33}=\dfrac{10}{99}\)
F=2\ 2/2.4+2/4.6+2/6.8+.....+2/2008.2010 \
=2 \ 1/2-1/4+1/4-1/6+1/6-1/8+.....+1/2008-1/2010 \
=2 \ 1/2-1/2010 \ =2 \ 502/1005 \ =1004/1005
chú ý : \ là ngoặc
A=4/2.4+4/4.6+4/6.8+...+4/2008.2010
=2.(2/2.4+2/4.6+2/6.8+...+2/2008.2010)
=2.(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010)
=2.(1/2-1/2010)
=2.502/1005
=1004/1005
Vậy A=1004/1005
100% giải đúng đầu tiên:
Ta có: \(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(=2.\frac{2}{2.4}+2.\frac{2}{4.6}+2.\frac{2}{6.8}+...+2.\frac{2}{2008.2010}\)
\(=2\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+..+\frac{2}{2008.2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2.\frac{1}{2}-2.\frac{1}{2010}\)
\(=1-\frac{1}{1005}=\frac{1004}{1005}\)
Bài 1 :
Đặt \(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{48.50}\) ta có :
\(A=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{48.50}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{48}-\frac{1}{50}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{50}\right)\)
\(A=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
Vậy \(A< \frac{1}{4}\)
Chúc bạn học tốt ~
\(F=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(F=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(F=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(F=2.\frac{502}{1005}\)
\(F=\frac{1004}{1005}\)
nhinf vào là biết luật ngay bài đó bằng = \(\frac{1004}{1005}\)
kết bạn với mình nha
\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(2A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)
\(2A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(2A=\frac{1}{1}-\frac{1}{100}\)
\(2A=\frac{99}{100}\Rightarrow A=\frac{99}{100}:2\Rightarrow A=\frac{99}{200}\)
Câu B và C làm tương tự.
bạn Nhi làm sai rồi
\(\frac{2}{2\cdot3}\) sao có thể bằng \(\frac{1}{2}-\frac{1}{3}\) được
\(\frac{1}{2\cdot3}\) mới bằng \(\frac{1}{2}-\frac{1}{3}\)
kết quả là : \(\frac{49}{100}\)
K = 2( 2/2.4 + 2/4.6 +......+ 2/2008.2010)
K = 2( 1/2 - 1/4 + 1/4 - 1/6 +......+ 1/2008 - 1/2010)
K = 2( 1/2 - 1/2010)
K = 2 . 1004/2010
K = 1004/1005
Ai k mk mk k lại
K=\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
K=\(\frac{4}{2}.\frac{2}{2.4}+\frac{4}{2}.\frac{2}{4.6}+...+\frac{4}{2}.\frac{2}{2008.2010}\)
K=\(\frac{4}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2008.2010}\right)\)
K=\(\frac{4}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+..+\frac{1}{2008}-\frac{1}{2010}\right)\)
K=\(\frac{4}{2}.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
K=\(\frac{4}{2}.\frac{502}{1005}\)
K=\(\frac{1004}{1005}\)
Ta có : D = \(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+.....+\frac{4}{2008.2010}\)
\(\Leftrightarrow D=2\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{2008.2010}\right)\)
\(\Leftrightarrow D=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(\Leftrightarrow D=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(\Leftrightarrow D=1-\frac{1}{1005}=\frac{1004}{1005}\)
D = 2.(2/2.4+2/4.6+...+2/2008.2010)
=2(1/2-1/4+1/4-1/6+......+1/2008-1/2
=2(1/2-1/2010)
=2.502/1005
=1004/1005
A=3n+1/n-1=3(n-1)+4/n-1=3+4/n-1
Để A là số nguyên thì 4/n-1 là số nguyên
=>n-1 thuộc Ư(4)=1,-1,2,-2,4,-4
=>n thuộc (2,0,3,-1,5,-3)