Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=1+\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\)
\(=\frac{2187}{2187}+\frac{729}{2187}+\frac{81}{2187}+\frac{27}{2187}+\frac{9}{2187}+\frac{3}{2187}+\frac{1}{2187}\)
\(=\frac{2187+729+81+27+9+3+1}{2187}\)
\(=\frac{3037}{2187}\)
Đúng 100%
\(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{729\cdot3}\)
\(A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(3A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
\(3A-A=\left(4+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)
\(2A=3-\frac{1}{3^7}\)
\(A=\frac{ 1}{2}\left(3-\frac{1}{3^7}\right)\)
Từ số 1 đến số 1 thứ 1000 có số chữ số 1 là:
(1000 - 1) : 1 + 1 = 1000(số)
Tổng dãy là:
(1000 + 1) x 1000 : 2 = 500500
Hiệu là:
500500 - 999 = 499501
\(A=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{2021}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{2022}{2021}\)
\(=\frac{2022}{2}\)
\(=1011\)
A= 1* (1/2+1/3+1/4+...+2021)
A= 1/2+1/3+1/4+...+2021
Mik sẽ ko tính giúp bạn hết toàn bộ để bạn có thể tự làm được!
\(a,\)\(\frac{13}{18}\div\frac{5}{9}-1\)
\(=\frac{13}{18}\times\frac{9}{5}-1\)
\(=\frac{13}{10}-1\)
\(=\frac{3}{10}\)
\(b,\)\(3+\frac{9}{4}\div\frac{3}{5}\)
\(=\)\(3+\frac{9}{4}\times\frac{5}{3}\)
\(=\)\(3+\frac{15}{4}\)
\(=\frac{27}{4}\)
\(\frac{13}{18}\div\frac{5}{9}-1\)
\(=\frac{13}{10}-1\)
\(=\frac{3}{10}\)
Đặt :
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\Rightarrow2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\Rightarrow2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\Rightarrow2A=\frac{1}{3}-\frac{1}{11}\)
\(\Rightarrow2A=\frac{3}{11}\)
\(\Rightarrow A=\frac{3}{22}\)
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)......\left(1+\frac{1}{9}\right)\left(1+\frac{1}{10}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{10}{9}.\frac{11}{10}=\frac{3.4.5......10.11}{2.3.4.....9.10}\)
\(=\frac{11}{2}\)
9 / 8 - 1/3 x 3/4 = 27 / 24 - 8 / 24 x 3/4 = 21 / 24 x 3/4 = 7/8 x 3/4 = 21 /32
\(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{729.3}\)
\(A=1+\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
=> \(3A=3+1+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
=> \(3A-A=3+1+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^6}-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)
<=> \(2A=3-\frac{1}{3^7}=\frac{3^8-1}{3^7}\)
=> \(A=\frac{3^8-1}{2.3^7}\)