Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)
\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)
\(\Rightarrow M< N\)
Bài 3 :
a) \(t^2+5t-8\) khi \(t=2\)
\(=5^2+2.5-8\)
\(=25+10-8\)
\(=27\)
b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)
\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)
\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)
c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)
\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)
\(\left(1\right)=1^3=1\)
M=1+2+22+23+...+299.
=> 2M = M= 2+2^2+2^3+...+2^99 + 2^100=>2M= M=2+22+23+...+299+2100
=> M = 2M-M = 2+2^2+2^3+...+2^99 + 2^100 - (1+2+2^2+2^3+...+2^99)=>M=2M−M= 2+22+23+...+299+2100−(1+2+22+23+...+299)
<=> M = 2^100-1 <2^100<=>M=2100−1<2100
<=>Vậy M<2^100
3A-A= 3^2+3^3+....+3^101-3 -3^2-3^3-....-3^100
A= (3^101-3 ) :2
A = 3 + 32 + 33 + .... + 3100
3A = 32 + 33 + 34 + ... + 3101
3A - A = (32 + 33 + 34 + ... + 3101) - (3 + 32 + 33 + ... + 3100)
2A = 3101 - 3
=> A = \(\frac{3^{101}-3}{2}\)
Ủng hộ mk nha !!! ^_^
3A= 1+ \(\frac{1}{3}+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{3}\right)^7\)
2A= 1 - \(\left(\frac{1}{3}\right)^8\)
A= \(\frac{1-\left(\frac{1}{3}\right)^8}{2}\)
Vậy....
Trả lời :
m2 . (n)3
Thay số : 22 . (-3)3 = 4 . (-27)
= - 108
Chúc học tốt nha !
tính giá trị biểu thức m2.(-n) 3 cho m=2 n=3.
Ta thay m ,n vào biểu thức ta đc:
22.(-3)3=4.(-9)=-36
học tốt