Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
17 - 16 + 15 + 14 - 13 + 12 - 11 - 10 + 9 - 8 + 7 - 6 - 5
= (17 - 16) + (15 - 10 - 5) + (14 - 13) + (12 - 11) + (9 - 8) + (7 + 6)
= 1 + 0 + 1 + 1 + 1 + 13
= 1 + 1 + 1 + 1 + 13
= (1 + 1 + 1 + 1) + 13
= 1 x 4 + 13
= 4 + 13
= 17
= 5
\(\frac{9^{10}\cdot27^7}{81^7\cdot3^{15}}=\frac{3^{20}\cdot3^{21}}{3^{28}\cdot3^{15}}=\frac{3^{41}}{3^{43}}=\frac{1}{9}\)
\(\frac{2^{10}\cdot3^{13}\cdot16^3}{4^{10}\cdot9^6}=\frac{2^{10}\cdot3^{13}\cdot2^{12}}{2^{20}\cdot3^{12}}=\frac{2^{22}\cdot3^{13}}{2^{20}\cdot3^{12}}=2^2\cdot3=12\)
Q=(2^9.3+2^9.5):2^12
Đặt A=2^9.3+2^9.5
A=2^9.(3+5)
A=2^9.8
Mặt khác:8=2^3
=>A=2^9.2^3
A=2^12
Theo đề bài ta có Q=(2^9.3+2^9.5):2^12
=>Q=2^12:2^12
Q=1
Nhìn dài dòng thế thôi chứ đơn giản lắm.Nếu thấy đúng thì cho mình nhé!
a. 57 + 58 + 59 + 60 + 61 - 17- 18 - 19 - 20 - 21
= (57 - 17) + (58 - 18) + (59 - 19) + (60 - 20) + (61 - 21)
= 40 + 40 + 40 + 40 + 40
= 40 . 5
= 200
b. 9 - 10 + 11 - 12 + 13 - 14 + 15 - 16
= ( 9 - 10 ) + ( 11 - 12 ) + ( 13 - 14 ) + ( 15 - 16 )
= -1 + (-1) + (-1) + (-1)
= (-1) . 4
= -4
\(\left(10^2+11^2+12^2\right):\left(13^2+14^2\right)=\left(100+121+144\right):\left(169+196\right)=1\)
\(9!-8!-7!\cdot8^2=8!\left(9-1\right)-7!\cdot8^2=7!\cdot8^2-7!\cdot8^2=0\)
\(\frac{\left(3\cdot4\cdot2^{16}\right)^2}{11\cdot2^{13}\cdot4^{11}-16^9}=\frac{3^2\cdot2^{36}}{11\cdot2^{35}-2^{36}}=\frac{9\cdot2^{36}}{2^{35}\cdot\left(11-2\right)}=\frac{9\cdot2^{36}}{2^{35}\cdot9}=2\)
9/(7.10) + 9/(10.13) + 9/(13.16) + ... + 9/(58.61)
= 3.(1/7 - 1/10 + 1/10 - 1/13 + 1/13 - 1/16 + ... + 1/58 - 1/61)
= 3.(1/7 - 1/61)
= 3 . 54/427
= 162/427
\(\dfrac{9}{7.10}\) + \(\dfrac{9}{10.13}\) + \(\dfrac{9}{13.16}\) + ... + \(\dfrac{9}{58.61}\)
= 3.(\(\dfrac{3}{7.10}\) + \(\dfrac{3}{10.13}\) + \(\dfrac{3}{13.16}\) + ... + \(\dfrac{3}{58.61}\))
= 3.(\(\dfrac{1}{7}\) - \(\dfrac{1}{10}\) + \(\dfrac{1}{10}\) - \(\dfrac{1}{13}\) + \(\dfrac{1}{13}\) - \(\dfrac{1}{16}\) + ... + - \(\dfrac{1}{61}\))
= 3.(\(\dfrac{1}{7}\) - \(\dfrac{1}{61}\))
= 3.\(\dfrac{54}{427}\)
= \(\dfrac{162}{427}\)