Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: do tam giác ABC cân nên đường cao AH cũng là đường trung tuyến của tam giác ADE. Suy ra HD=HE.
Xét tam giác ADH vuông tại H. Áp dụng định lí Pytago ta có:
AH2+HD2=AD2
(1,2)2+HD2=42
1,44+HD2=16
HD2=16-1,44=14,56(m)
=>HD=\(\frac{2\sqrt{91}}{5}\)(m)
=>ED=\(\frac{4\sqrt{91}}{5}\)\(\approx\)7,6m
Câu 1 :(1,5 điểm)
Trong hình sau, cho a // b tính
Câu 2 :(1,5 điểm)
Cho đoạn thẳng AB dài 3cm. Vẽ đường trung trực của đoạn thẳng AB.
Câu 3 :(3 điểm)
Cho a // b; c a.
Đường thẳng c có vuông góc với đường thẳng b không ? vì sao?
Cho . tính ,
Câu 4 :(4 điểm)
Hình vẽ sau đây cho biết : a // b, , .
Tính .
a: DF=căn 13^2-5^2=12cm
b: DE<DF
=>góc DFE<góc DEF
c: Xét ΔFDN vuông tại D và ΔFHN vuông tại H có
FN chung
góc DFN=góc HFN
=>ΔFDN=ΔFHN
=>ND=NH
Xét ΔNDK vuông tại D và ΔNHE vuông tại H có
ND=NH
góc DNK=góc HNE
=>ΔNDK=ΔNHE
=>KN=EN
14,4m2
Lời giải:
Diện tích hình vuông là:
$3,6\times 3,6=12,96$ (m2)