K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019
https://i.imgur.com/zKxGpG9.jpg
12 tháng 7 2019

minhf bos

11 tháng 6 2019

Vẽ AA', BB' ⊥ BC (A', B' ∈ BC). Khi đó:

-Tam giác AA'D vuông cân tại A' => AA'=DA'

-Tam giác BB'C là nửa tam giác đều với ∠B=600

=> \(B'C=\sqrt{3}BB'=\sqrt{3}AA'\)

ABB'A' là hình chữ nhật nên AB = A'B' = \(2\sqrt{3}\) cm

CD = DA'+A'B'+B'C = \(AA'+2\sqrt{3}+\sqrt{3}AA'\) = 12 (cm)

=> \(AA'=\frac{12-2\sqrt{3}}{\sqrt{3}+1}=\frac{\left(12-2\sqrt{3}\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

=\(\frac{14\sqrt{3}-18}{2}=7\sqrt{3}-9\) (cm)

SABCD= (AB+CD).AA'/2= \(\left(6+\sqrt{3}\right)\left(7\sqrt{3}-9\right)\)= \(33\sqrt{3}-33\) cm2

( Chắc là kết quả như này :D )

11 tháng 6 2019

AB//CD hay AD//BC vậy bạn, hay đề bài chỉ có vậy thôi?

3 tháng 9 2017

Hạ AJ vuông góc CD mọi vấn đề đ.c giải quyết =))

20 tháng 3 2021

D C P H A B 3cm 4cm 4cm 60^ 60^

20 tháng 3 2021

Định lí 1 : Nếu tam giác vuông có một góc bằng \(30^0\)thì cạnh đối diện với góc ấy bằng nửa cạnh huyền 

Vì \(DP\perp AB\)(giả thiết) \(\Rightarrow\Delta PAD\)vuông tại P

\(\Delta PAD\)vuông tại P có \(\widehat{DAP}=60^0\)(giả thiết)

\(\Rightarrow\widehat{PDA}=30^0\)

Do đó \(2PA=DA\)(định lí 1)

\(\Rightarrow4PA^2=DA^2\)

Vì \(\Delta PAD\)vuông tại P (chứng minh trên)

\(\Rightarrow PA^2+PD^2=AD^2\)(định lí Py-ta-go)

\(\Rightarrow PA^2+4^2=4PA^2\)(thay số)

\(\Rightarrow4PA^2-PA^2=16\)

\(\Rightarrow3PA^2=16\)

\(\Rightarrow PA^2=\frac{16}{3}\Rightarrow PA=\sqrt{\frac{16}{3}}=\frac{4}{\sqrt{3}}\left(cm\right)\)(vì \(PA>0\))

Do đó: \(DA=2PA=2.\frac{4}{\sqrt{3}}=\frac{8}{\sqrt{3}}\left(cm\right)\)

Vì \(CH\perp AB\)(giả thiết)

\(\Rightarrow\Delta CHB\)vuông tại H.

\(\Delta CHB\)vuông tại H có \(\widehat{HCB}=60^0\)(giả thiết)

\(\Rightarrow BC=2HC\)(định lí 1)

\(\Rightarrow BC=2.4\)(thay số)

\(\Rightarrow BC=8\left(cm\right)\)

Vì \(\Delta CHB\)vuông tại H (chứng minh trên)

\(\Rightarrow HB^2+HC^2=BC^2\)(định lí Py-ta-go)

\(\Rightarrow HB^2+4^2=8^2\)(thay số)

\(\Rightarrow HB^2+16=64\)

\(\Rightarrow HB^2=56\Rightarrow HB=\sqrt{56}=2\sqrt{14}\left(cm\right)\)(vì \(HB>0\))

Mặt khác, xét tứ giác DCHP có:

 \(DP//CH\)(vì cùng vuông góc với AB)

Và \(DP=CH\)(giả thiết)

\(\Rightarrow\)DCHP là hình bình hành 

\(\Rightarrow CD=PH=3\left(cm\right)\)(tính chất).

Ta có:

\(AB=AP+PH+HB\)

\(\Rightarrow AB=\frac{4}{\sqrt{3}}+3+2\sqrt{14}\left(cm\right)\)

Do đó:

\(P_{ABCD}=AB+BC+CD+DA=\)\(\frac{4}{\sqrt{3}}+3+2\sqrt{14}+8+3+\frac{8}{\sqrt{3}}\)(thay số)

\(P_{ABCD}=\frac{12}{\sqrt{3}}+14+2\sqrt{14}=4\sqrt{3}+2\sqrt{14}+14\left(cm\right)\)

Vậy \(P_{ABCD}=4\sqrt{3}+2\sqrt{14}+14\left(cm\right)\)

23 tháng 8 2019

Kẻ BH\(\perp DC\)

=< \(\widehat{BHC}=90^0\)

\(\widehat{A}=\widehat{D}=90^0\)

=> ABHD là hcn

=> \(\left\{{}\begin{matrix}BH=AD=3cm\\DH=AB=4cm\end{matrix}\right.\)(các cạnh đối trong hcn)

=> HC=DC-DH=8-4=4(cm)

Áp dụng đlýpy-ta-go vào tam giác vuông BHC có:

\(BC^2=BH^2+HC^2=3^2+4^2=25\)

=> BC=5 (cm)

Áp dụng ht lượng trong tam giác vuông có

\(sin\widehat{C}=\frac{BH}{BC}=\frac{3}{5}\) => \(\widehat{C}\approx37^0\)

\(sin\widehat{HBC}=\frac{HC}{BC}=\frac{4}{5}\) => \(\widehat{BHC}\approx53^0\)

Có : \(\widehat{B}=\widehat{BHC}+\widehat{ABH}=53^0+90^0=143^0\)