Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=4\left[\left(cos^21^0+cos^289^0\right)+\left(cos^22^0+cos^288^0\right)+...+\left(cos^244^0+cos^246^0\right)+cos^245^0\right]\)
\(=4\left[\left(cos^21^0+sin^21^0\right)+\left(cos^22^0+sin^22^0\right)+...+\left(cos^244^0+sin^244^0\right)+cos^245^0\right]\)
\(=4\left(1+1+...+1+\frac{\sqrt{2}}{2}\right)\)
\(\left(cos^21+cos^289\right)+\left(cos^22+cos^288\right)+....+\left(cos^244+cos^246\right)+cos^245-\frac{1}{2}\)
\(=1+1+...+1+\frac{1}{2}-\frac{1}{2}\) ( có 44 số 1 )
= 44
Áp dụng 2 quy tác đơn giản: \(cosx=sin\left(90^0-x\right)\)
và \(sin^2x+cos^2x=1\)
Xét \(cos^21^0+cos^22^0+...+cos^289^0-45.0,5\)
\(=\left(cos^21^0+sin^21^0\right)+\left(cos^22^0+sin^22^0\right)+...+\left(cos^244^0+sin^244^0\right)+cos^245^0-22,5\)
\(=1+1+...+1+\left(\frac{1}{\sqrt{2}}\right)^2-22,5\)
\(=44+\frac{1}{2}-22,5=22\)
\(=cos^21+cos^289+cos^22+cos^288+...+cos^244+cos^246+cos^245-\frac{1}{2}\)
\(=cos^21+cos^2\left(90-1\right)+cos^22+cos^2\left(90-2\right)+...+cos^244+cos^2\left(90-44\right)+\left(\frac{\sqrt{2}}{2}\right)^2-\frac{1}{2}\)
\(=cos^21+sin^21+cos^22+sin^22+...+cos^244+sin^244\)
\(=1+1+...+1\) (44 số 1)
\(=44\)
\(A=\cos^215^o-\cos^225^o+\cos^235^o-\cos^245^o+\cos^255^o-\cos^265^o+\cos^275^o\)
\(A=\sin^275^o-\sin^265^o+\sin^255^o-\sin^245^o+\cos^255^o-\cos^265^o+\cos^275^o\)
\(A=\left(\sin^275^o+\cos^275^o\right)-\left(\sin^265^o+\cos^265^o\right)+\left(\sin^255^o+\cos^255^o\right)-\sin^245^o\)
\(A=1-1+1-\frac{1}{2}\)
\(A=\frac{1}{2}\)
a) 1- \(sin^2\alpha\)= \(cos^2\alpha\)
b) (\(1-cos\alpha\))(\(1+cos\alpha\)) = 1 - cos2\(\alpha\) = sin2\(\alpha\)
c) 1 + cos2\(\alpha\) + sin2\(\alpha\) = \(1+1=2\)
d) sin\(\alpha\) - sin\(\alpha.cos^2\alpha\)
= \(sin\alpha\left(1-cos^2\alpha\right)=sin\alpha.sin^2\alpha=sin^3\alpha\)
e) \(sin^4\alpha+cos^4\alpha+2sin^2\alpha.cos^2\alpha\)
= \(\left(sin^2\alpha\right)^2+2sin^2\alpha.cos^2\alpha+\left(cos^2\alpha\right)^2\)
= \(\left(sin^2\alpha+cos^2\alpha\right)^2=1^2=1\)
f) \(tan^2\alpha-sin^2\alpha.tan^2\alpha\)
= \(tan^2\alpha\left(1-sin^2\alpha\right)=tan^2\alpha.cos^2\alpha=sin^2\alpha\)
g) \(cos^2\alpha+tan^2\alpha.cos^2\alpha\)
= \(cos^2\alpha\left(1+tan^2\alpha\right)=cos^2\alpha.\dfrac{1}{cos^2\alpha}=1\)
h) \(tan^2\alpha\left(2cos^2\alpha+sin^2\alpha-1\right)\)
= \(tan^2\alpha\left[cos^2\alpha+\left(cos^2\alpha+sin^2\alpha\right)-1\right]\)
= \(tan^2\alpha\left(cos^2\alpha+1-1\right)\)
= \(tan^2\alpha.cos^2\alpha=sin^2\alpha\)
=(\(\left(cos^21+cos^289\right)+\left(cos^22+cos^288\right)+...+cos^245\)
=1+1+..+0.5
mà từ 1 đến 89 có 44 cặp
=>=44.5