Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(2\widehat{A}=3\widehat{B}=6\widehat{C}\Rightarrow\frac{2\widehat{A}}{6}=\frac{3\widehat{B}}{6}=\frac{6\widehat{C}}{6}\Rightarrow\frac{\widehat{A}}{3}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{1}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+2+1}=\frac{180^o}{6}=30^o\)
=> \(\hept{\begin{cases}\frac{\widehat{A}}{3}=30^o\\\frac{\widehat{B}}{2}=30^o\\\frac{\widehat{C}}{1}=30^o\end{cases}}\Rightarrow\hept{\begin{cases}\widehat{A}=90^o\\\widehat{B}=60^o\\\widehat{C}=30^o\end{cases}}\)
Theo đề bài ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) và \(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^o}{15}=12^o\)
\(\Rightarrow\widehat{A}=12^o.3=36^o\)
\(\widehat{B}=12^o.5=60^o\)
\(\widehat{C}=12^o.7=84^o\)
nếu số đo (độ) các góc của tam giác ABC là A , B , C (độ) thì theo điều kiện bài ra và tính chất của dãy tỉ số bằng nhau , ta có \(\dfrac{A}{3}=\dfrac{B}{5}=\dfrac{C}{7}=\dfrac{A+B+C}{3+5+7}=\dfrac{180}{15}=12\)
vậy : A = 3 . 12 = 36
B = 5 . 12 = 60
C = 7 . 12 = 84
=> A = 36 (độ) ; B = 60 (độ) ; C = 84 (độ)
a) 3A=2B ; 4B=3C
=> A/2=B/3; B/3=C/4
Mẫu số chung của B là 9
=> A/2.3=B/3.3; B/3.3=C/4.3
=> A/6=B/9=C/12
=> Ta có: A/6=B/9=C12 = A+B+C =180 độ
= 6+9+12 = 27
=> 180/27=20/3
=> A/6=20/3=6.20/3=40
=> B/9=20/3.9=60
=> C/12=20/3.12=80
Vậy A=40
B=60
C=80
Gọi số đo góc A,B,C lần lượt là x,y,z ( x,y,z là các số dương < 180 )
Ta có:\(x+y+z=180^0\)
\(\Leftrightarrow5z+3z+z=180^0\)
\(\Leftrightarrow9z=180^0\Rightarrow z=20^0\Rightarrow x=100^0;y=60^0\)
Theo bài ta có: \(\widehat{A}=5\widehat{C}\)\(\Rightarrow\frac{\widehat{A}}{5}=\widehat{C}\)(1)
\(\widehat{B}=3\widehat{C}\)\(\Rightarrow\frac{\widehat{B}}{3}=\widehat{C}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{\widehat{A}}{5}=\frac{\widehat{B}}{3}=\widehat{C}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{5+3+1}=\frac{180^o}{9}=20^o\)
\(\Rightarrow\widehat{A}=20^o.5=100^o\); \(\widehat{B}=20^o.3=60^o\); \(\widehat{C}=20^o.1=20^o\)
Vậy \(\widehat{A}=100^o\), \(\widehat{B}=60^o\); \(\widehat{C}=20^o\)
Theo đề, ta có:\(\hept{\begin{cases}\widehat{A}=2\widehat{B}\\\widehat{C}-\widehat{B}=36^0\end{cases}\Rightarrow\hept{\begin{cases}\widehat{A}=2\widehat{B}\\\widehat{C}=36^0+\widehat{B}\end{cases}}}\)
\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (tổng ba góc của một tam giác)
\(\Rightarrow2\widehat{B}+\widehat{B}+36^0+\widehat{B}=180^0\)
\(\Rightarrow4\widehat{B}=144^0\Rightarrow\widehat{B}=36^0\)
\(\widehat{A}=2\widehat{B}=2.36^0=72^0\)
\(\widehat{C}=180^0-36^0-72^0=72^0\)
b) \(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{1}=\frac{\widehat{C}}{2}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+1+2}=\frac{180^0}{6}=30^0\)
\(\Rightarrow\hept{\begin{cases}\widehat{A}=30^0.3=90^0\\\widehat{B}=30^0.1=30^0\\\widehat{C}=30^0.2=60^0\end{cases}}\)
Theo đề bài, ta có:
- \(\widehat{A}+\widehat{B}=\widehat{C}\)
(Nếu như vậy thì thường là \(\widehat{C}=90\)thì \(\widehat{A}+\widehat{B}=\widehat{C}=90\)
- \(2\widehat{A}=3\widehat{B}\Rightarrow\frac{\widehat{A}}{3}=\frac{\widehat{B}}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau;
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{2}=\frac{\widehat{A}+\widehat{B}}{3+2}=\frac{90}{5}=18\)
Do đó:
\(\widehat{A}=54\)
Vậy \(\widehat{A}=54\)
Ta có: A + B = C
Mặt khác ta lại có: 2A=3B
hay A x\(\frac{2}{3}\)= B
Trong tam giác ABC ta có: A+B+C= 1800
hay: A + A x\(\frac{2}{3}\)+A +A x\(\frac{2}{3}\)= 1800
A x (1+\(\frac{2}{3}\)+1 +\(\frac{2}{3}\)) =1800
A x \(\frac{10}{3}\)=1800
A= 1800 : \(\frac{10}{3}\)
A= 540
2) TA CÓ 1/22-1=(1/2-1)x(1/2+1)=-1/2x3/2
1/32-1=(1/3-1)x(1/3+1)=-2/3X4/3..............1/992-1=(1/99-1)(1/99+1)=-98/99x100/99;1/1002-1=(1/100-1)x(1/100+1)=-99/100x101/100
ta có A=-(1/2x2/3x.....98/99x99/100)x(3/2x4/3x......x100/99x101/100)=-1/100x101/2=-101/50<-1/2
TA CÓ 1/22-1=(1/2-1)X(1/2+1)=-1/2X3/2 ;1/32-1=(1/3-1)X(1/3+1)=-2/3X4/3.....................
1/992-1=(1/99-1)X(1/99+1)=-98/99X100/99 ;1/1002-1=(1/100-1)X(1/100+1)=99/100X101/100
VẬY A=-(1/2X2/3X.......X98/99X99/100)X(3/2X4/3X....X100/99X101/100)=-101/50<-1/2