Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{\frac{8^{10}+4^{10}}{8^4+4^{11}}}=\sqrt{\frac{2^{30}+2^{20}}{2^{22}+2^{12}}}=\sqrt{\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}}=\sqrt{\frac{2^{20}}{2^{12}}}=\sqrt{2^8}=\sqrt{\left(2^4\right)^2}\)\(=2^4=16.\)
#)Giải :
\(A=\sqrt{\frac{8^{10}+4^{10}}{8^4+4^{11}}}=\sqrt{\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}}=\sqrt{\frac{2^{30}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}}=\sqrt{\frac{2^{30}}{2^{12}}}=\sqrt{2^8}=\sqrt{256}=16\)
\(A=\sqrt{\frac{2^{30}+2^{20}}{2^{12}+2^{22}}}=\sqrt{\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}}=\sqrt{2^{20-12}}=\sqrt{2^8}=2^4=16\)
\(a,\) \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(=\frac{2^{12}.3^{10}+\left(2.3\right)^9.2^3.3.5}{2^{12}.3^{12}-\left(2.3\right)^{11}}\)
\(=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{\left(2^{12}.3^{10}\right)\left(1+5\right)}{\left(2^{11}.3^{11}\right)\left(2.3-1\right)}\)
\(=\frac{\left(2^{12}.3^{10}\right).6}{\left(2^{11}.3^{11}\right).5}\)
\(=\frac{2.6}{3.5}\)
\(=\frac{2.2}{5}\)
\(=\frac{4}{5}\)
\(b,\) \(\frac{2^{15}.9^4}{6^3.8^3}\)
\(=\frac{2^{15}.3^8}{2^3.3^3.2^9}\)
\(=\frac{2^{15}.3^8}{2^{12}.3^3}\)
\(=2^3.3^5\)
\(=8.243\)
\(=1944\)
Chúc bạn học tốt ^^
a) \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{\left(2^2\right)^6.\left(3^2\right)^5+6^9.120}{\left(2^3\right)^4.3^{12}-6^{11}}=\frac{2^{12}.3^{10}+6^9.120}{2^{12}.3^{12}-6^{11}}=\frac{6^{10}.4+6^{10}.20}{6^{12}-6^{11}}=\frac{6^{10}.\left(4+20\right)}{6^{11}.\left(6-1\right)}=\frac{6^{11}.4}{6^{11}.5}=\frac{4}{5}\)
b) \(\frac{2^{15}.9^4}{6^3.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^3.3^3.2^9}=\frac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5=1944\)
c) \(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(4.2\right)^{10}+4^{10}}{\left(2^3\right)^4+4^6.4^5}=\frac{4^{10}.2^{10}+4^{10}}{2^{12}+4^6.4^5}=\frac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.2^{10}}=\frac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(1+2^{10}\right)}=\frac{4^{10}}{4^6}=4^4=256\)
8^10 + 4^10 / 8^4 + 4^11
= (2^3)^10 + (2^2)^10 / (2^3)^4 + (2^2)^11
= 2^30 + 2^20 / 2^12 + 2^22
= 2^20 . (2^10 + 1) / 2^12 . (1 + 2^10)
= 2^20 / 2^12
= 2^8
= 256
a, \(\frac{2^{15}.\left(-9\right)^4}{-6^3.8^3}=\frac{2^{15}.\left(-3.3\right)^4}{-\left(2.3\right)^3.\left(2^3\right)^3}=\frac{2^{15}.3^4.3^4}{-2^3.3^3.2^9}=\frac{2^{15}.3^8}{-2^{12}.3^3}=\frac{2^3.3^5}{-1}=-8.243=-1944\)
b, \(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}=\frac{2^{20}}{2^{12}}=\frac{1}{2^8}=\frac{1}{256}\)
\(M=\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{ \left(2^3\right)^4+\left(2^2\right)^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}=\frac{2^{20}}{2^{12}}=2^8=256\)
Chúc học tốt :)
\(M=\frac{8^{10}+4^{10}}{8^4+4^{11}}\)
\(M=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}\)
\(M=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}\)
\(M=\frac{2^{20}.\left(2^{10}+1\right)}{2^{12}.\left(1+2^{10}\right)}\)
\(M=\frac{2^{20}}{2^{12}}\)
\(M=2^8=256\)
\(M=\frac{8^{10}+4^{10}=1.074.790.400}{8^4+4^{11}=4.198.400}\)
Vậy
\(\Rightarrow M=\frac{1.074.790.400}{4.198.400}\)
P/s; Ko chắc đâu nhé