Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính A/B
A=(14+1/4)(34+1/4)(54+1/4)...........(194+1/4)
B=(24+1/4)(44+1/4)(64+1/4)...........(204+1/4)
Tính A/B
A=(14+1/4)(34+1/4)(54+1/4)...........(194+1/4)
B=(24+1/4)(44+1/4)(64+1/4)...........(204+1/4)
hơi dài, thôi chăm chỉ tí có sao :v =))
\(A=-x^3\left(3x-1\right)-x\left(1+3x^4\right)-x^2\left(x^2-x-2\right)\)
\(=-3x^4+x^3-x-3x^5-x^4+x^3+2x^2\)
\(=-4x^4+2x^3-x-3x^5+2x^2\)
\(B=-x^2\left(2x^2-2x-4\right)-2x\left(2-4x^4\right)-2x^3\left(2x-2\right)\)
\(=-2x^3+2x^3+4x^2-4x+8x^5-4x^4+4x^3\)
\(=4x^2-4x+8x^5-4x^4+4x^3\)
Ta có : \(A-B=-4x^4+2x^3-x-3x^5+2x^2-4x^2+4x-8x^5+4x^4-4x^3\)
\(=-2x^3+3x-11x^5-2x^2\)
Tương tự bn nhé, mk hơi bị đao phần đa thức khi qua kì thi nên hơi bị chậc lẫn một xíu =((
1) x4y2 + x2y4 + x4y3 + x2y5 = (x4y2 + x2y4) + (x4y3 + x2y5) = x2y2.(x2 + y2) + x2y3.(x2 + y2) = x2y2.(x2+ y2) (1 + y) = [xy.(x2 + y2)].[xy(1+y)]
=> x4y2 + x2y4 + x4y3 + x2y5 chia cho xy.(x2 + y2) bằng xy.(1+ y)
2) A = (n2 - 8)2 + 36 = n4 - 16n2 + 100 = (n4 + 20n2 + 100) - 36n2 = (n2 + 10)2 - (6n)2 = (n2 - 6n+ 10).(n2 + 6n+ 10)
Vậy để A là số nguyên tố thì n2 - 6n + 10 = 1 hoặc n2 + 6n + 10 = 1
Mà n là số tự nhiên nên n2+ 6n + 10 > 1
=> n2 - 6n + 10 = 1 => n2 - 6n + 9 = 0 => (n -3)2 = 0 => n = 3
Vậy....
3) a) = xy(x - y) - xz(x + z) + yz.[(x+ z) + (x - y)] = xy(x - y) - xz(x + z) + yz.(x + z) + yz(x - y)
= [xy(x - y) + yz.(x - y)] + [(yz.(x+ z) - xz(x+z)] = y(x - y)(x+ z) + z(x + z).(y - x) = (x+ z)(x- y).(y - z)
b) = (x2 + x)2 - (2x)2 - 4(x+3) = (x2 + x + 2x).(x2 + x- 2x) - 4(x+3) = (x2 + 3x).(x2 - x) - 4(x+3)
= (x+3).[x.(x2 - x) - 4] = (x+3).(x3 - x2 - 4) = (x+3).(x3 - 8 + 4 - x2) = (x+3).[(x - 2)(x2 + 2x + 4) - (x - 2).(x+2)]
= (x + 3).(x - 2).(x2 + 2x + 4 - x- 2) = (x + 3).(x - 2).(x2 + x + 2)
4) a) n4 + 1/4 = (n4 + n2 + 1/4) - n2 = (n2 + 1/2)2 - n2 = (n2 - n + 1/2).(n2 + n + 1/2) = [n(n - 1) + 1/2].[n.(n+1) + 1/2]
Áp dụng công thức ta có:
A = \(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)...\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right).\left(4^4+\frac{1}{4}\right)...\left(20^4+\frac{1}{4}\right)}=\frac{\frac{1}{2}.\left(1.2+\frac{1}{2}\right).\left(2.3+\frac{1}{2}\right).\left(3.4+\frac{1}{2}\right)...\left(18.19+\frac{1}{2}\right).\left(19.20+\frac{1}{2}\right)}{\left(1.2+\frac{1}{2}\right).\left(2.3+\frac{1}{2}\right).\left(3.4+\frac{1}{2}\right).\left(4.5+\frac{1}{2}\right)...\left(19.20+\frac{1}{2}\right).\left(20.21+\frac{1}{2}\right)}\)
A = \(\frac{\frac{1}{2}}{20.21+\frac{1}{2}}=\frac{1}{841}\)
TA có \(\left(a+b+c\right)^2=0\Rightarrow ab+bc+ca=-\frac{1}{2}\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
=> \(a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)
Mà \(\left(a^2+b^2+c^2\right)^2=1\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
=> \(a^4+b^4+c^4=\frac{1}{2}\)
^_^
Ta có: a+b+c=0 <=> (a+b+c)2=0 <=> a2+b2+c2+ 2( ab+ac+bc)=0 <=> 2(ab+ac+bc)= -1 ( vì a2+b2+c2=1) <=> ab+ac+bc= -1/2
=> (ab+ac+bc)2= 1/4 <=> a2b2+a2c2+b2c2+2abc(a+b+c)= 1/4 <=> 2(a2b2+a2c2+b2c2)= 1/2 ( vì a+b+c=0) (*)
Lại có: a2+b2+c2=1 <=> (a2+b2+c2)2=1 <=> a4+b4+c4+2(a2b2+a2c2+b2c2)=1 <=> a4+b4+c4= 1/2 ( vì (*))
Vậy,...