Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x\left(x-5\right)-x\left(4+3x\right)=43\)
\(\Leftrightarrow3x^2-15x-4x-3x^2=43\)
\(\Leftrightarrow-19x=43\)
\(\Leftrightarrow x=\frac{-43}{19}\)
a) \(\left(2x+3\right)^2-3\left(x-4\right)\left(x+4\right)=\left(x-2\right)^2+1\)
\(\Leftrightarrow4x^2+12x+9-3\left(x^2-16\right)=x^2-4x+4+1\)
\(\Leftrightarrow4x^2+12x+9-3x^2+48=x^2-4x+5\)
\(\Leftrightarrow x^2+12x+57=x^2-4x+5\)
\(\Leftrightarrow16x+52=0\)
\(\Leftrightarrow x=-\frac{13}{4}\)
b) \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)
\(\Leftrightarrow\)Xem lại đề !
c) \(x\left(x-1\right)-\left(x-3\right)\left(x+4\right)=5x\)
\(\Leftrightarrow x^2-x-x^2-x+12=5x\)
\(\Leftrightarrow-2x+12=5x\)
\(\Leftrightarrow7x-12=0\)
\(\Leftrightarrow x=\frac{12}{7}\)
d) \(\left(2x+1\right)\left(2x-1\right)=4x\left(x-7\right)-3x\)
\(\Leftrightarrow4x^2-1=4x^2-28x-3x\)
\(\Leftrightarrow28x+3x-1=0\)
\(\Leftrightarrow31x-1=0\)
\(\Leftrightarrow x=\frac{1}{31}\)
Bài 1:
a) (3x-2).(4x+5)-6x.(2x-1) = 12x^2 +15x - 8x -10 - 12x^2 + 6x = 13x - 10
b) (2x-5)^2 - 4.(x+3).(x-3) = 4x^2 - 20x + 25 - 4x^2 + 12x -12x + 36 = -20x + 61
Bài 2:
a)(2x-1)^2-(x+3)^2 = 0
<=> (2x-1-x-3).(2x-1+x+3) =0
<=>(x-4).(3x+2) = 0
<=> x-4 = 0 hoặc 3x+2=0
*x-4=0 => x=4
*3x+2 = 0 => 3x=-2 => x=-2/3
b)x^2(x-3)+12-4x=0 <=> x^2(x-3) - 4(x-3) =0 <=> (x-3).(x-2)(x+2) <=> x-3=0 hoặc x-2=0 hoặc x+2 =0
*x-3=0 => x=3
*x-2=0 =>x=2
*x+2=0 =>x=-2
c) 6x^3 -24x =0 <=> 6x(x^2 -4)=0 <=> 6x(x-2)(x+2)=0 <=> x=0 hoặc x-2 =0 hoặc x+2=0 <=> x=0 hoặc x=2 hoặc x=-2
A = 4x - x2 + 3
A = -x2 + 4x + 3
A = - (x2 - 4x - 3)
A = - (x - 2)2 + 7 lớn hơn hoặc bằng 7.
Dấu "=" xảy ra khi x - 2 = 0 => x = 2
Vậy...
\(A=4x-x^2+3=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-4x+4-7\right)\)
\(=-\left[\left(x-2\right)^2-7\right]\)
\(=-\left(x-2\right)^2+7\le7\)
Vậy \(A_{max}=7\Leftrightarrow x-2=0\Leftrightarrow x=2\)
\(B=x-x^2=-\left(x^2-x\right)\)
\(=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Vậy \(B_{max}=\frac{1}{4}\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
giúp mk vsssss
hơi dài, thôi chăm chỉ tí có sao :v =))
\(A=-x^3\left(3x-1\right)-x\left(1+3x^4\right)-x^2\left(x^2-x-2\right)\)
\(=-3x^4+x^3-x-3x^5-x^4+x^3+2x^2\)
\(=-4x^4+2x^3-x-3x^5+2x^2\)
\(B=-x^2\left(2x^2-2x-4\right)-2x\left(2-4x^4\right)-2x^3\left(2x-2\right)\)
\(=-2x^3+2x^3+4x^2-4x+8x^5-4x^4+4x^3\)
\(=4x^2-4x+8x^5-4x^4+4x^3\)
Ta có : \(A-B=-4x^4+2x^3-x-3x^5+2x^2-4x^2+4x-8x^5+4x^4-4x^3\)
\(=-2x^3+3x-11x^5-2x^2\)
Tương tự bn nhé, mk hơi bị đao phần đa thức khi qua kì thi nên hơi bị chậc lẫn một xíu =((