K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

\(\left(a+b\right)\left(a+b\right)^2\) =\(\left(a+b\right)^3\) =\(a^3+3a^2b+3ab^2+b^3\)

\(\left(a-b\right)\left(a-b\right)^2=\left(a-b\right)^3\)=\(a^3-3a^2b+3ab^2-b^3\)

26 tháng 10 2018

Bài 1:

a) \(2x^2y-xy=xy\left(2x-1\right)\)

b)\(2x^2-x-2y^2-y=\left(2x^2-2y^2\right)-\left(x+y\right)\)

\(=2\left(x^2-y^2\right)-\left(x+y\right)\)

\(=2\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(2x-2y-1\right)\)

26 tháng 10 2018

Bài 2:

a)\(x^3-\frac{1}{9}x=0\)

\(\Leftrightarrow x\left(x^2-\frac{1}{9}\right)=0\)

\(\Leftrightarrow x\left(x-\frac{1}{3}\right)\left(x+\frac{1}{3}\right)=0\)

\(\Rightarrow x=0\text{ hoặc }x-\frac{1}{3}=0\Leftrightarrow x=\frac{1}{3}\text{ hoặc }x+\frac{1}{3}=0\Leftrightarrow x=-\frac{1}{3}\)

Vậy...

b)\(\left(x+1\right)^2=5x\left(x+1\right)\)

\(\Leftrightarrow\left(x+1\right)^2-5x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+1-5x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(-4x+1\right)=0\)

\(\Leftrightarrow-\left(x+1\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\4x=1\Leftrightarrow x=\frac{1}{4}\end{cases}}}\)

Vậy...

16 tháng 10 2016

a,Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1) 
= a(a - 1)(a + 1)(a² - 4 + 5) 
= a(a - 1)(a + 1)[ (a² - 4) + 5) ] 
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1) 
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1) 
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) 
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5 
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5. 
=> a^5 - a chia hết cho 5 

b,Phương pháp Fertma: Ta có n thuộc Z và 7 là số nguyên tố 
Nên n^7 đồng dư n (mod 7) 
=> n^7 - n đồng dư 0 (mod 7) 
=> n^7 - n chia hết cho 7 
- Phương pháp Qui nạp: Đặt A(n)=n^7 - n (cho dễ làm) 
+ n=0 => A(n)=0 chia hết cho 7 
+Giả sử n=k thì A(k)= k^7-k chia hết cho 7 
+Với n=k+1 thì 
A(k+1)= (k+1)^7-(k+1) 
= k^7 + 7k^6 + 21k^5 + 35k^4 + 35k^3 + 21k^2 + 7k +1 - k -1 
= k^7 - k + 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) 
Do k^7-k chia hết cho 7 
& 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) chia hết cho 7 
Suy ra: A(k+1) chia hết cho 7 
Vậy: n^7 - n chia hết cho 7

k minh nha
Mà a^5 chia hết cho 5 => a chia hết cho 5

16 tháng 10 2016

Chứng minh

a) a5-a chia hết cho 5 

b) a​7-a chia hết cho 7

a,Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1) 
= a(a - 1)(a + 1)(a² - 4 + 5) 
= a(a - 1)(a + 1)[ (a² - 4) + 5) ] 
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1) 
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1) 
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) 
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5 
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5. 
=> a^5 - a chia hết cho 5 

b,Phương pháp Fertma: Ta có n thuộc Z và 7 là số nguyên tố 
Nên n^7 đồng dư n (mod 7) 
=> n^7 - n đồng dư 0 (mod 7) 
=> n^7 - n chia hết cho 7 
- Phương pháp Qui nạp: Đặt A(n)=n^7 - n (cho dễ làm) 
+ n=0 => A(n)=0 chia hết cho 7 
+Giả sử n=k thì A(k)= k^7-k chia hết cho 7 
+Với n=k+1 thì 
A(k+1)= (k+1)^7-(k+1) 
= k^7 + 7k^6 + 21k^5 + 35k^4 + 35k^3 + 21k^2 + 7k +1 - k -1 
= k^7 - k + 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) 
Do k^7-k chia hết cho 7 
& 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) chia hết cho 7 
Suy ra: A(k+1) chia hết cho 7 
Vậy: n^7 - n chia hết cho 7
Mà a^5 chia hết cho 5 => a chia hết cho 5

nhé !

23 tháng 10 2018

\(x^2-y^2-ax+ay\)

\(=\left(x-y\right)\left(x+y\right)-a\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-a\right)\)

\(2xy-x^2-y^2+16\)

\(=4^2-\left(x^2-2xy+y^2\right)\)

\(=4^2-\left(x-y\right)^2\)

\(=\left(4-x+y\right)\left(4+x-y\right)\)

\(x^2+5x+4\)

\(=\left(x^2+x\right)+\left(4x+4\right)\)

\(=x\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right)\left(x+4\right)\)

\(x^4+x^2+1=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)-x^2=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

10 tháng 2 2019

\(5a^2+5b^2+8ab-2a+2b+2=0\)

\(\Leftrightarrow4a^2+4b^2+8ab+a^2-2a+1+b^2-2b+1=0\)

\(\Leftrightarrow\left(2a+2b\right)^2+\left(a-1\right)^2+\left(b+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2a+2b=0\\a-1=0\\b+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a\cdot1+2\left(-1\right)=0\left(tm\right)\\a=1\\b=-1\end{cases}}}\)

Thay a, b vào B ta được :

\(B=\left(1-1\right)^{2018}+\left(1-2\right)^{2019}+\left(-1+1\right)^{2020}\)

\(B=0^{2018}+\left(-1\right)^{2019}+0^{2020}\)

\(B=-1\)

10 tháng 2 2019

Dòng 2 là \(+2b\)nhé mình bấm lộn :)

19 tháng 10 2019

\((a+3)^2-(a-1)^2\\ =(a+3-a+1)(a+3+a-1)\\ =4(2a+2)\\ =8(a+1)\\ \)

Vì 8 ⋮ 8 với mọi a ∈ Z.

=> 8(a+1) ⋮ 8 với mọi a ∈ Z.

Vậy ( a + 3 )2 - ( a - 1 )2 ⋮ 8 với mọi a ∈ Z.

17 tháng 6 2017

chiều mai bn nộp thì làm luôn đi còn hỏi đáp nữa !!!!!!

16 tháng 7 2019

bài 3:

b. x^3-6x^2+12x-8+6(x^2+2x+1)-(x^3+3x^2+9x-3x^2-9x-27)=97

=>x^3-6x^2+12x-8+6x^2+12x+6-x^3+27=97

=>24x+25=97

=>x=3