Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H O
BD = HD + HB
= 2 + 6
= 8 ( cm )
ABCD là hình chữ nhật
=> OA = OB = OC = OD = \(\frac{BD}{2}=\frac{AC}{2}=\frac{8}{2}=4\) \(\left(cm\right)\)
=> OH = OD – HD
= 4 - 2 = 2 ( cm )
\(\Delta AOD\)cân => AO = AD = 4 ( cm )
AD định lý py ta go cho tam giác ABD
BD2 = AB2 + AD2
=> AB2 = 82 - 42 = 64 - 16 = 48
=> \(AB\approx7\left(cm\right)\)
A B C D H O
Kẻ đường chéo AC cắt BD tại O
Ta có: BD = DH + HB = 2 + 6 = 8 (cm)
\(AC=BD\Rightarrow OA=OB=OC=OD=\frac{BD}{2}=\frac{8}{2}=4\left(cm\right)\)
\(\Rightarrow OH=OD-HD=4-2=2\left(cm\right)\Rightarrow OH=HD\left(=2cm\right)\)
=> AH là đường trung tuyến của t/g OAD
Mà AH là đường cao của t/g OAD
=> t/g OAD cân tại A => OA = AD = 4 (cm)
Xét t/g ABD vuông tại A có: \(AB^2+AD^2=BD^2\) (định lí pytago)
\(\Rightarrow AB=\sqrt{BD^2-AD^2}=\sqrt{8^2-4^2}=\sqrt{48}\approx7\left(cm\right)\)
ĐÁp Án nè:
AB= 20cm
AD= 15cm