Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(DE=AM\ge AH\). Dấu " = " xảy ra khi \(M\equiv H\)
Vậy DE có độ dài nhỏ nhất là AH khi điểm M là trung điểm của BC.
MDA = DAE = AEM = 90
=> ADME là hcn
Tam giác ABC vuông cân tại A
=> ACB = ABC = 45
mà MEC = 90
=> Tam giác EMC vuông cân tại E
=> EM = EC
mà DM = AE (ADME là hcn)
=> EM + DM = EC + AE = AC = 4 (cm)
PADME = 2 . (EM + DM) = 2 . 4 = 8 (cm)
DE = AM (ADME là hcn)
=> DE nhỏ nhất
<=> AM nhỏ nhất
<=> AM _I_ BC tại M
mà tam giác ABC vuông cân tại A
=> AM là đường trung tuyến
=> M là trung điểm
Vậy DE nhỏ nhất <=> M là trung điểm của BC.
a: Xét tứ giác ADME có
\(\widehat{EAD}=\widehat{AEM}=\widehat{ADM}=90^0\)
Do đó: ADME là hình chữ nhật
Bài 3:
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Xét tứ giác AEFD có
AE//FD
AE=FD
Do đó: AEFD là hình bình hành
mà AE=AD
nên AEFD là hình thoi
b: Xét tứ giác BEFC có
BE//CF
BE=CF
Do đó: BEFC là hình bình hành
mà BE=BC
nên BEFC là hình thoi
Xét ΔEDC có
EF là đường trung tuyến
EF=DC/2
Do đó: ΔEDC vuông tại E
Xét tứ giác EMFN có
\(\widehat{EMF}=\widehat{ENF}=\widehat{MEN}=90^0\)
Do đó: EMFN là hình chữ nhật
c: Để EMFN là hình chữ nhật thì EM=FN
=>ED=AF
=>AEFD là hình vuông
=>\(\widehat{BAD}=90^0\)
bài 1 hình tự vẽ
ABCD là hcn nên góc B=90
áp dụng pytago => BC=6cm
bài 2 hình lười vẽ => tự vẽ hình
tam giác ABC có d tđ AB, e tđ BC
=> DE là đtb
=> DE // và = 1/2 AC (1)
mà M là trung điểm AC => AM = 1/2 AC (2)
(1) và (2) => DE // và = AM
=> ĐPCM
câu b
có câu a mà để ADEM là hcn thì => góc A=90 độ
<=> tam giác ABC vuông tại A
câu c hình như sai, M di chuyển trên BC, M là tđ của BC rồi mà
bài 3
câu a cm tam giác oab cân O
=> oa=ob
cmtt => oa=oc
=> DPCM
câu b
tam giác oab cân o có ox là đường cao
=> góc aox = góc xob
cmtt => góc aoy= góc yoc
tổng 4 góc đó = góc boc
mà góc xoa + góc aoy =90
=> ...
=> góc boc = 180 độ
=> ĐPcm
bài 4
câu a
admn là hcn ( vì có 3 góc vuông)
câu b
cm dn là đtb
=> n là tđ Ac
có ..
=> adce là hbh
mà ac vuông góc de
=> adce là hình thoi
câu c :V, cm ở câu b rồi kìa
câu d, ko biết cách trình bày nhưng để diều đó xảy ra khi tam giác abc cân tại a
vì bài làm hơi dài nên tôi làm hình như hơi quá tắt thì phải, cái chỗ chám chấm ko hiểu thì nói tôi chỉ cho
ở chỗ bài 3
góc box + góc xoa + góc aoy + góc yoc = góc boc
mà góc box = góc xoa và góc aoy = góc yoc
=> 2 ( góc xoa + góc aoy) = góc boc
mà góc xoa + góc aoy = 90
=> 2( góc xoa + góc aoy) = 90 * 2 = góc boc = 180
=> ĐPCM
câu b bài 4
tự cm dn là đường trung bình của tam giác abc
=> n là trung điểm ac
có d đối xứng với e qua n => n là trung điểm de
=> adce là hbh
chỉ vậy thôi nhá
MDA = DAE = AEM = 90
=> ADME là hcn
Tam giác ABC vuông cân tại A
=> ACB = ABC = 45
mà MEC = 90
=> Tam giác EMC vuông cân tại E
=> EM = EC
mà DM = AE (ADME là hcn)
=> EM + DM = EC + AE = AC = 4 (cm)
PADME = 2 . (EM + DM) = 2 . 4 = 8 (cm)
DE = AM (ADME là hcn)
=> DE nhỏ nhất
<=> AM nhỏ nhất
<=> AM _I_ BC tại M
mà tam giác ABC vuông cân tại A
=> AM là đường trung tuyến
=> M là trung điểm
Vậy DE nhỏ nhất <=> M là trung điểm của BC.
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
câu a của bài 3 là tứ giác ADME nhé mn