Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-7\right)^{2009}=\left(3x-7\right)^{2007}\)
\(\Leftrightarrow\left(3x-7\right)^{2009}-\left(3x-7\right)^{2007}=0\)
\(\left(3x-7\right)^{2007}.\left[\left(3x-7\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(3x-7\right)^{2007}=0\\\left(3x-7\right)^2=1\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\\left(3x-7\right)=\pm1\end{cases}}}\)
=> \(x=\frac{7}{3},x=2,x=\frac{8}{3}\)
Vậy ...
2/\(\frac{5^{102}.9^{1009}}{3^{2018}.25^{50}}=\frac{5^{100+2}.3^{2.1009}}{3^{2018}.5^{2.50}}=\frac{5^{100}.5^2.3^{2018}}{3^{2018}.5^{100}}=5^2=25\)
a: =>x-2017=0 và y-2018=0
=>x=2017; y=2018
b: =>3x-y=0 và y+2/3=0
=>y=-2/3 và 3x=-2/3
=>x=-2/9 và y=-2/3
c: =>3/4x-1/2=0 và 4/5y+6/25=0
=>x=2/3 và y=-3/10
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
\(\frac{x-2017}{5}-\frac{x-2017}{6}=\frac{x-2017}{7}-\frac{x-2017}{8}\)
\(\Leftrightarrow\frac{x-2017}{5}-\frac{x-2017}{6}-\frac{x-2017}{7}+\frac{x-2017}{8}=0\)
\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{5}-\frac{1}{6}-\frac{1}{7}+\frac{1}{8}\right)=0\)
\(\Rightarrow x-2017=0\Rightarrow x=2017\)
Vậy x=2017
\(A=2\cdot\left(\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{2017^2}\right)< 2\cdot\left(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{2015\cdot2016}\right)\)
Đặt \(M=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{2015\cdot2016}=\left(1+\frac{1}{3}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2016}\right)\)
\(\Rightarrow M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1008}\right)\)
\(\Rightarrow M=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}< \frac{1}{1009}+\frac{1}{1009}+...+\frac{1}{1009}\)(1008 số hạng )
hay\(M< \frac{1008}{1009}\Rightarrow A< 2\cdot\frac{1008}{1009}=\frac{504}{1009}\left(ĐPCM\right)\)
Ta có: \(P=\frac{6^{2017}.4^{2018}.75^{1009}}{2^{4035}.3^{3025}.10^{2018}}=\frac{\left(2.3\right)^{2017}.\left(2^2\right)^{2018}.\left(5.5.3\right)^{1009}}{2^{4035}.3^{3025}.\left(2.5\right)^{2018}}\)
\(=\frac{2^{2017}.3^{2017}.2^{4036}.5^{2018}.3^{1009}}{2^{4035}.3^{3025}.2^{2018}.5^{2018}}=\frac{2^{6053}.3^{3026}.5^{2018}}{2^{6053}.3^{3025}.5^{2018}}=3\)
Vậy P=3 <=> A. P=3