K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2018

\(\left(3x-7\right)^{2009}=\left(3x-7\right)^{2007}\)

\(\Leftrightarrow\left(3x-7\right)^{2009}-\left(3x-7\right)^{2007}=0\)

\(\left(3x-7\right)^{2007}.\left[\left(3x-7\right)^2-1\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(3x-7\right)^{2007}=0\\\left(3x-7\right)^2=1\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\\left(3x-7\right)=\pm1\end{cases}}}\)

=> \(x=\frac{7}{3},x=2,x=\frac{8}{3}\)

Vậy ...

21 tháng 11 2018

2/\(\frac{5^{102}.9^{1009}}{3^{2018}.25^{50}}=\frac{5^{100+2}.3^{2.1009}}{3^{2018}.5^{2.50}}=\frac{5^{100}.5^2.3^{2018}}{3^{2018}.5^{100}}=5^2=25\)

6 tháng 6 2015

a, 2009 - |x - 2009| = x 

=> |x - 2009| = 2009 - x 

=> x = 2009

29 tháng 12 2015

(3x - 7)2007 = (3x - 7)2005

=> (3x - 7)2007 - (3x - 7)2005 = 0

=> (3x - 7)2005 [(3x - 7)2 - 1] = 0

=> (3x - 7)2005 = 0 hoặc (3x - 7)2 - 1 = 0

+) (3x - 7)2005 = 0

=> 3x - 7 = 0

=> 3x = 7

=> x = 7/3

+) (3x - 7)2 - 1 = 0

=> (3x - 7)2 = 1

=> 3x - 7 = 1  => 3x = 8 => x = 8/3

     3x - 7 = -1 => 3x = 6 => x = 2

Vậy: x \(\in\){-7/3;8/3;2

29 tháng 12 2015

3x-7=1=>x=2\(\frac{2}{3}\)

3x-7=0=>x=2\(\frac{1}{3}\)

19 tháng 6 2019

a)\(\left(\frac{1}{5}\right)^{3x-1}=\frac{1}{25}\)

\(\Leftrightarrow\left(\frac{1}{5}\right)^{3x-1}=\left(\frac{1}{5}\right)^2\)

<=> 3x-1=2

<=> 3x=3

<=> x=1

c) \(\left(\frac{2}{3}\right)^{1-x}=\left(\frac{2}{3}\right)^3\)

<=> 1-x=3

<=>x=-2

d) (0,7)3x+1=(0,7)3

<=> 3x+1=3

<=> 3x=2

<=> x=2/3

19 tháng 6 2019

b) \(\left(\frac{4}{7}\right)^{x+2}=\frac{7}{4}\)

\(\Leftrightarrow\left(\frac{4}{7}\right)^{x+2}=\left(\frac{4}{7}\right)^{-1}\)

<=> x+2=-1

<=> x=-3

13 tháng 2 2017

1) \(P=\frac{16x^4y^6}{9}.\frac{9x^2y^4}{4}=4x^6y^{10}\), đa thức bậc 16, hệ số là 4, biến là \(x^6y^{10}\)

Tại x=-1, y=1 thay vào ta được: P=4

2) \(f\left(x\right)=x^5+x^3-4x^2-2x+5\)

\(g\left(x\right)=x^5-x^4+2x^2-3x+1\)

\(h\left(x\right)=f\left(x\right)+g\left(x\right)=2x^5-x^4+x^3-2x^2-5x+6\)

3) \(B=\frac{x^2+y^2+2+5}{x^2+y^2+2}=1+\frac{5}{x^2+y^2+2}\le1+\frac{5}{0+0+2}=\frac{7}{2}\)

Do B LN <=> \(\frac{5}{x^2+y^2+2}\)LN <=> \(x^2+y^2+2\)NN <=> x=y=0

4) Ta thấy 51x+26y=2000

CHÚ Ý: VP chẵn => VT chẵn mà 26y chẵn nên => 51x chẵn => x=2

Thay vào ta tìm được y=73 ( thỏa mãn là số nguyên tố)

vậy x=2, y=73

5) Nhận xét: VP \(\ge\)0 => VT \(\ge\)0 => \(y^2\le25\Rightarrow y=0,1,2,3,4,5\)

Mà VP chẵn => y lẻ => y=1,3,5

Thay y=1,3,5 vào ta được y=5, x=2009 là thỏa mãn

30 tháng 9 2017

3/ ta để ý thấy ở số mũ sẽ có thừa số 1000-103=0

nên số mũ chắc chắn bằng 0

mà số nào mũ 0 cũng bằng 1 nên A=1

5/ vì |2/3x-1/6|> hoặc = 0

nên A nhỏ nhất khi |2/3x-6|=0

=>A=-1/3

6/ =>14x=10y=>x=10/14y

23x:2y=23x-y=256=28

=>3x-y=8

=>3.10/4y-y=8

=>6,5y=8

=>y=16/13

=>x=10/14y=10/14.16/13=80/91

8/106-57=56.26-56.5=56(26-5)=59.56 

có chứa thừa số 59 nên chia hết 59

4/ tính x 

sau đó thế vào tinh y,z

6 tháng 3 2020

1. A = 75(42004 + 42003 +...+ 4+ 4 + 1) + 25

    A = 25 . [3 . (42004 + 42003 +...+ 4+ 4 + 1) + 1]

    A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 4+ 3 . 4 + 3 + 1)

    A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 4+ 3 . 4 + 4)

    A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)

    A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100

6 tháng 3 2020

3a) |x| = 1/2 

=> x = 1/2 hoặc x = -1/2

với x = 1/2:

A = \(3.\left(\frac{1}{2}\right)^2-2.\frac{1}{2}+1\)

\(A=\frac{3}{4}-1+1=\frac{3}{4}\)

với x = -1/2

A = \(3.\left(-\frac{1}{2}\right)^2-2\left(-\frac{1}{2}\right)+1\)

\(A=\frac{3}{4}+1+1=\frac{3}{4}+2=\frac{11}{4}\)

13 tháng 6 2018

Với mọi x,y ta có :

\(\left(\frac{3x+5}{9}\right)^{100}\ge0\)

\(\left(\frac{3y+0,4}{3}\right)^{102}\ge0\)

\(\Leftrightarrow\left(\frac{3x+5}{9}\right)^{100}+\left(\frac{3y+0,4}{3}\right)^{102}\ge0\)

Lại có : \(\left(\frac{3x+5}{9}\right)^{100}+\left(\frac{3y+0,4}{3}\right)^{102}=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(\frac{3x+5}{9}\right)^{100}=0\\\left(\frac{3y+0,4}{3}\right)^{102}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{3x+5}{9}=0\\\frac{3y+0,4}{3}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+5=0\\3y+0,4=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{0,4}{3}\end{cases}}\)

Vậy ..