K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

các câu trên dễ rồi tự giải nhé mk chỉ giải của d thôi

d, n^2 + 7 chia hết cho n+1        (1)

n+1 chia hết cho n+1

=> (n-1)(n+1) chia hết cho n+1

=> n^2 -1 chia hết cho n+1   (2)

từ (1) và (2)

=> n^2+7 - n^2 +1 chia hết cho n+1

=> 8 chia hết cho n+1

=> n+1 thuộc ước của 8 

=> n+1 ={ 1,2,4.-1.-2.-4}

=> n={ 0,1,3,-2,-3,-5}

thử lại nhé ( vì đây là giải => nên phải thử lại nha)

3 tháng 10 2017

dễ ẹt thế mà cũng ko biết làm

7 tháng 11 2024

yamte aaaa

DD
8 tháng 12 2021

a) \(\left(n+1\right)^2+\left(n+2\right)^2+\left(n+3\right)^2=\left(n+10\right)^2\)

\(\Leftrightarrow n^2+2n+1+n^2+4n+4+n^2+6n+9=n^2+20n+100\)

\(\Leftrightarrow2n^2-8n-86=0\)

\(\Leftrightarrow n^2-4n=43\)

Ta có: \(n^2-4n=n^2-n-3n=n\left(n-1\right)-3n\)

\(n\left(n-1\right)\)là tích hai số tự nhiên liên tiếp nên khi chia cho \(3\)dư \(0\)hoặc \(2\).

Suy ra \(n^2-4n\)chia cho \(3\)dư \(0\)hoặc \(2\).

Mà \(43\)chia cho \(3\)dư \(1\)

do đó phương trình đã cho không có nghiệm tự nhiên. 

b) Ta có: \(n^2+h^2+b^2+k^2+n+h+b+k=\left(n^2+n\right)+\left(h^2+h\right)+\left(b^2+b\right)+\left(k^2+k\right)\)

\(=n\left(n+1\right)+h\left(h+1\right)+b\left(b+1\right)+k\left(k+1\right)\)chia hết cho \(2\).

mà \(n+h+b+k\)chia hết cho \(6\)nên chia hết cho \(2\)

suy ra \(n^2+h^2+b^2+k^2\)chia hết cho \(2\)suy ra không phải là số nguyên tố 

(do \(n^2+h^2+b^2+k^2>2\)).

4 tháng 2 2017

Bài này sai đề. Chẳng hạn n =120 ; 240 ; 360 ;... ( vô số vô hạn ) thì đẳng thức thỏa mãn.

4 tháng 2 2017

Thử lại làm sao chia được cho 120