Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{x^2+2014}-x\right)\left(x+\sqrt{x^2+2014}\right)\left(y+\sqrt{y^2+2014}\right)\)
nhân lên
1) x+ căn x^2+2014=2014/ y- căn y^2+2014= 2014(y+căn y^2+ 2014)/-2014=-y-(căn y^2+2014)
tương tự , đuwa bên x+ căn... qua=> 1 pt y+ căn//..... =??
sau đó kết hợp 2 cái này là ra
\(2x^{2014}+1005\ge1007\sqrt[1007]{x^{4028}}=1007x^4\)
\(\Leftrightarrow x^{2014}\ge\frac{1007x^4-1005}{2}\)
\(\Rightarrow3\ge\frac{1007\left(x^4+y^4+z^4\right)-3.1005}{2}\)
\(\Rightarrow x^4+y^4+z^4\le3\)
Ta có:\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow ab\le\frac{a^2+b^2}{2}\) với a;b là các số thực
Áp dụng vào bài toán ta có:
\(LHS=x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\)
\(\le\frac{x^2+1-y^2}{2}+\frac{y+2-z^2}{2}+\frac{z+3-x^2}{2}\)
\(=3=RHS\)
Đẳng thức xảy ra tại \(x=1;y=0;z=\sqrt{2}\)
Vậy ..............
\(\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a.\)
Mà \(\left(x+\sqrt{x^2+a}\right)\left(\sqrt{x^2+a}-x\right)=a.\)
và \(\left(\sqrt{y^2+a}-y\right)\left(\sqrt{y^2+a}+y\right)=a.\)
từ 3 cái trên =>\(\hept{\begin{cases}y+\sqrt{y^2+a}=\sqrt{x^2+a}-x\\x+\sqrt{x^2+a}=\sqrt{y^2+a}-y\end{cases}}\)cộng 2 vế lại và thu gọn => 2( x+y) =0 => x+y =0
(x+√x2+a)(y+√y2+a)=a.(x+x2+a)(y+y2+a)=a.
Mà (x+√x2+a)(√x2+a−x)=a.(x+x2+a)(x2+a−x)=a.
Và (√y2+a−y)(√y2+a+y)=a.(y2+a−y)(y2+a+y)=a.
Từ 3 cái trên =>\hept{y+√y2+a=√x2+a−xx+√x2+a=√y2+a−y\hept{y+y2+a=x2+a−xx+x2+a=y2+a−ycộng 2 vế lại và thu gọn => 2( x+y) =0 => x + y = 0
\(B=\left(x-1\right)^2+\left(y-1\right)^2+xy-x-y+1-3+2013^{2014}\)
\(B=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)+2013^{2014}-3\)
\(B=\left(x-1+\frac{y-1}{2}\right)^2+\frac{3\left(y-1\right)^2}{4}+2013^{2014}-3\ge2013^{2014}-3\)
Vậy \(minB=2013^{2014}-3\) <=> \(y=x=1\)
y/0.04+y*3/2-y*6.5=2014
=>y*(1/0.04)+y*3/2-y*6.5=2014
=>y*(1/0.04+3/2-6.5)=2014
=>y=100.7
rtrtrtrtrtrtrrrrrrrrrrrrrrrrrrrrrr