K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2019

\(\frac{1}{3}y+\frac{2}{5}\left(y+1\right)=0\)

\(\frac{1}{3}y+\frac{2}{5}y+\frac{2}{5}=0\)

\(y\left(\frac{1}{3}+\frac{2}{5}\right)=-\frac{2}{5}\)

\(y\left(\frac{1.5+2.3}{15}\right)=\frac{-2}{5}\)

\(\frac{11}{15}y=\frac{-2}{5}\)

\(y=\frac{-2}{5}\div\frac{11}{15}\)

\(y=\frac{-2}{5}.\frac{15}{11}\)

\(y=\frac{-6}{11}\)

4 tháng 4 2019

\(\frac{-15}{12}y+\frac{3}{7}=\frac{6}{5}y-\frac{1}{2}\)

\(\frac{6}{5}y-\frac{1}{2}=\frac{-15}{12}y+\frac{3}{7}\)

\(\frac{1}{2}=\frac{6}{5}y+\frac{15}{12}y+\frac{3}{7}\)

\(\frac{1}{2}-\frac{3}{7}=\frac{6}{5}y+\frac{15}{12}y\)

\(\frac{1}{14}=y\left(\frac{6}{5}+\frac{15}{12}\right)\)

\(\frac{1}{14}=\frac{49}{20}y\)

\(y=\frac{1}{14}\div\frac{49}{20}\)

\(y=\frac{10}{343}\)

4 tháng 7 2018

a) \(2\frac{1}{3}+\left(x-\frac{3}{2}\right)=\left(3-\frac{3}{2}\right)x\)

\(2\frac{1}{3}+x-\frac{3}{2}=3x-\frac{3}{2}x\)

\(2\frac{1}{3}-\frac{3}{2}=3x-\frac{3}{2}x-x\)

\(\frac{5}{6}=3x-\frac{3}{2}x-x\)

\(\frac{5}{6}=\left(3-\frac{3}{2}-1\right)x\)

\(\frac{5}{6}=\frac{1}{2}x\)

\(x=\frac{5}{6}:\frac{1}{2}\)

\(x=\frac{5}{3}\)

b) |3x-4|+|3y+5|=0

ĐK : \(\hept{\begin{cases}\left|3x-4\right|\ge0\\\left|3y+5\right|\ge0\end{cases}}\Leftrightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\)

Mà |3x-4|+|3y+5|=0 nên :

\(\Rightarrow\hept{\begin{cases}3x-4=0\\3y+5=0\end{cases}}\Rightarrow\hept{\begin{cases}3x=4\\3y=-5\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{-5}{3}\end{cases}}\)

Vậy x=4/3 ; y=-5/3

c) \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|=0\)

ĐK : \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|\ge0\\\left|y+\frac{1890}{1975}\right|\ge0\\\left|z-2004\right|\ge0\end{cases}}\Leftrightarrow\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|\ge0\)

Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|=0\) nên :

\(\Rightarrow\hept{\begin{cases}x+\frac{19}{5}=0\\y+\frac{1890}{1975}=0\\z-2004=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{19}{5}\\y=-\frac{1890}{1975}\\z=2004\end{cases}}\)

Vậy ...

27 tháng 10 2016

Bài 1: Tìm x, y, z

\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)

=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)

-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

\(\frac{x}{9}=3\rightarrow x=27\)

\(\frac{y}{12}=3\rightarrow y=36\)

\(\frac{z}{20}=3\rightarrow z=60\)

Vậy x = 27 ; y = 36 ; z = 60

Bài 2 : Tìm x, y:

5x = 2y và x.y = 40

Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)

Cách 1:

\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40

Đặt \(\frac{x}{2}=\frac{y}{5}\) = k

=> x = 2.k ; y = 5.k

x.y = 40 -> 2k = 5k = 40

-> 10 . \(k^2\) = 40

-> \(k^2\) = 4 -> k = 2 hoặc k = -2

k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)

k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)

Cách 2:

\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)

=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4

x = 4 -> 4.y = 40 => y = 10

x = -4 -> (-4).y = 40 => y = -10

Vậy x = 4 hoặc -4

y = 10 hoặc -10

 

 

 

27 tháng 10 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)

\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)

3 tháng 8 2017

\(\frac{x}{12}=\frac{y}{3}=\frac{x}{12}=\frac{2y}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

   \(\frac{x}{12}=\frac{2y}{6}\Rightarrow\frac{x-2y}{12-6}=\frac{36}{6}=6\)

\(\frac{x}{12}=6\Rightarrow x=6.12=72\)

\(\frac{2y}{6}=6\Rightarrow2y=6.6\Rightarrow2y=36\Rightarrow y=36:2=18\)

Vậy...

3 tháng 8 2017

a) \(\frac{x}{12}=\frac{y}{3}\)và \(x-2y=36\)

Áp dụng tính chất của dãy tỉ số bằng nhau :

Ta có : \(\frac{x}{12}=\frac{2y}{3}=\frac{x-2y}{12-3}=\frac{x-2y}{12-6}=\frac{36}{6}=6\)

\(\frac{x}{12}=6\Rightarrow x=72\)

\(\frac{2y}{6}=6\Rightarrow2y=36\Rightarrow y=18\)

Vậy ...

25 tháng 10 2017

Mình chỉ cần các bạn trả lời 4 câu nhanh nhất mình sẽ k.

30 tháng 7 2019

a)x-3/x+5=5/7 suy ra 7.(x-3) = 5(x+5)

Tương đương : 7x - 21 = 5x + 25

                          7x - 5x = 25 + 21 = 46

                          2x = 46 suy ra : x = 46/2 = 23

 Vậy x = 23

18 tháng 7 2019

a)Ta có : 2x+2y-z-7=0 => 2x+2y-z=7

Ta có : \(x=\frac{y}{2}=>\frac{x}{2}=\frac{y}{4}\)

Mà \(\frac{y}{4}=\frac{z}{5}\)nên  \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}=\frac{2x+2y-z}{4+8-5}=\frac{7}{7}=1\)

Từ \(\frac{x}{2}=1=>x=2\)

Từ\(\frac{y}{4}=1=>y=4\)

Từ \(\frac{z}{5}=1=>z=5\)

 \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)

18 tháng 7 2019

Cam on

1 tháng 3 2017

a) \(\frac{2}{3a}-\frac{3}{a}=\frac{2}{3a}-\frac{9}{3a}=\frac{-7}{3a}=\frac{7}{15}\Leftrightarrow-3a=15\Leftrightarrow a=-5\)

b)\(2x^3-1=15\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)

\(\Rightarrow\frac{2+16}{9}=\frac{y-15}{16}=2\Leftrightarrow y-15=32\Leftrightarrow y=47\)

c) \(\left|x\right|=3\Rightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\) rồi xét 2 trường hợp để tính A nhé :)

1 tháng 3 2017

Bài 1: ĐK của a: \(a\ne0\)

Quy đồng VT ta có: \(\frac{2a-9a}{3a^2}=\frac{7}{15}\)

                    \(\Leftrightarrow\frac{-7a}{3a^2}=\frac{7}{15}\)

                    \(\Leftrightarrow-7a.15=3a^2.7\)

                    \(\Leftrightarrow-105a=21a^2\)

                    \(\Leftrightarrow-105a-21a^2=0\)

                    \(\Leftrightarrow a\left(-105-21a\right)=0\)

                    \(\Leftrightarrow\hept{\begin{cases}a=0\left(l\right)\\-105-21a=0\end{cases}\Leftrightarrow a=-5\left(n\right)}\)

Vậy:..

2 tháng 2 2019

Nhác quá mấy bài này hỏi làm j

1 tháng 10 2016

Bạn lần sau đăng ít thôi nhé :)

a/ \(\frac{x}{y}=5\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{x+y}{5+1}=\frac{18}{6}=3\)

=> x = 15 , y = 3

b/ \(\frac{x}{17}=\frac{y}{2}\Rightarrow\frac{2x}{34}=\frac{y}{2}=\frac{2x-y}{34-2}=\frac{64}{32}=2\)

=> x = 34, y = 4

c/ \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)

=> x = -28 , y=-12

d,e,f,g,h tương tự.

i/ \(x:y=5:6\Rightarrow\frac{x}{5}=\frac{y}{6}\)

Làm tương tự các câu còn lại.

j/ Đặt \(\frac{x}{4}=\frac{y}{7}=k\) \(\Rightarrow\begin{cases}x=4k\\y=7k\end{cases}\)

xy = 112 => 4k.7k = 112 => \(k^2=4\Rightarrow k=\pm2\)

Nếu k = 2 thì x = 8, y = 14

Nếu k = -2 thì x = -8 , y = -14

k/ \(-2x=3y\Rightarrow\frac{x}{3}=\frac{y}{-2}\)

Làm tương tự câu j.

2 tháng 10 2016

bn đăng lại ik

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)Bài 2: Tìm x, y, z thão mãn:a. \(2x=3y=7z\) và  \(x+y+z-13=0\)b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot...
Đọc tiếp

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)

Bài 2: Tìm x, y, z thão mãn:

a. \(2x=3y=7z\) và  \(x+y+z-13=0\)

b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)

c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)

d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)

e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot y=15\)

f. \(\frac{x^2-y^2}{3}=\frac{y^2+x^2}{-5}=x^{10}\cdot y^{10}=1024\)

g. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)

h. \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

i. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x\cdot y+y\cdot z+x\cdot z=31\)

k. \(7x=3y:5y=7z\)  và \(x\cdot y+x\cdot z-y\cdot z=4\)

 Bìa 3: Tính 

\(Cho \frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Tính

\(a. A=\frac{5x+3y}{5y-4z}\)

\(b. B=\frac{x+2y-3z}{3y+2z-5x}\)

\(c. C=\frac{2y-3z}{x+y+z}\)

Bài 4: 

\(Cho \frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) với \(a+b+c\ne0\) và \(a=2011\)
Tính b và 3b-4c

0