K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)

nên \(\dfrac{x}{10}=\dfrac{y}{15}\)(1)

Ta có: \(\dfrac{y}{5}=\dfrac{z}{4}\)

nên \(\dfrac{y}{15}=\dfrac{z}{12}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)

Đặt \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=10k\\y=15k\\z=12k\end{matrix}\right.\)

Ta có: xyz=1800

\(\Leftrightarrow1800k^3=1800\)

\(\Leftrightarrow k^3=1\)

\(\Leftrightarrow k=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=10\cdot1=10\\y=15\cdot1=15\\z=12\cdot1=12\end{matrix}\right.\)

1 tháng 7 2019

ghse5uye5bvs

3 tháng 7 2019

Đặt \(k=\frac{y+z-x}{7}=\frac{z+x-y}{11}=\frac{x+y-z}{5}=\frac{xyz}{3}\)

Áp dụng dãy tỉ số bằng nhau:

\(k=\frac{y+z-x}{7}=\frac{z+x-y}{11}=\frac{y+z-x+z+x-y}{7+11}=\frac{2z}{18}=\frac{z}{9}\)

=> z=9k

Tương tự:

\(k=\frac{x+y-z}{5}=\frac{z+x-y}{11}=\frac{2x}{16}=\frac{x}{8}\)

=> x=8k

\(k=\frac{x+y-z}{5}=\frac{y+z-x}{7}=\frac{2y}{12}=\frac{y}{6}\)

=> y=6k

Ta có: \(\frac{xyz}{3}=k\Rightarrow\frac{6k.9k.8k}{3}=k\Leftrightarrow144k^3-k=0\Leftrightarrow k\left(144k^2-1\right)=0\)

+) TH1: k=0 ta có: x=y=z=0

+) Th2: \(144k^2-1=0\Leftrightarrow k^2=\frac{1}{144}=\frac{1}{12^2}\Leftrightarrow k=\pm\frac{1}{12}\)

Với \(k=\frac{1}{12}\).

Ta có: \(z=9k=\frac{9}{12}=\frac{3}{4};x=8k=\frac{8}{12}=\frac{2}{3};y=6k=\frac{6}{12}=\frac{1}{2}\)

Với k=-1/12 Em tự tính nhé

20 tháng 6 2016

Giả sử có các số nguyên x,y,z thỏa mãn các đẳng thức đã cho. 

Xét x3+xyz=x(x2+yz)=579 --> x là số lẻ.Tương tự xét

y3+xyz=795; z3+xyz=975 ta được y,z là số lẻ

Vậy x3 là 1 số lẻ; xyz là 1 số lẻ, do đó x3+xyz là 1 số chẵn trái với đề bài cho x3+xyz=579 là số lẻ 

Vậy không tồn tại các số nguyên x,y,z thỏa mãn các đẳng thức đã cho.

a) Vì vai trò của x, y, z như nhau nên ko mất tính tổng quát, giả sử x≤y≤zx≤y≤z

⇒⇒ 3z ≥≥ xyz

⇒⇒ 3 ≥≥ xy

Vì xy nguyên dương nên xy = 1 hoặc xy = 2

+ Nếu xy = 1 thì x + y + z = z ⇒⇒ x + y = 0, loại vì x, y nguyên dương

+ Nếu xy = 2 thì x + y + z = 2z ⇒⇒ x + y = z. Do xy = 2 và x ≤≤ y nên x = 1, y = 2, do đó y = 3.

Vậy...

b, xyz = 9 + x + y + z
<=> 1 = 1/yz + 1/xz + 1/xy + 9/xyz
giả sử: x ≥ y ≥ z ≥ 1, ta có:
1 = 1/yz + 1/xz + 1/xy + 9/xyz ≤ 1/z^2 + 1/z^2 + 1/z^2 + 9/z^2 = 12/z^2
=> z^2 ≤ 12 => z = 1, 2 , 3
*z = 1:
1=1/y + 1/x + 1/xy ≤ 1/y + 1/y + 1/y = 3/y
=> y ≤ 3 => y = 1,2,3
y =1 => x= 11 + x (vô nghiệm)
y = 2 => 2x = 12 + x => x = 12 trường hợp nầy nghiệm (12,2,1)
y = 3 => 3x = 13 + x ( không có ngiệm x nguyên)

* z = 2
1 = 1/2y + 1/2x + 1/xy + 1/2xy = 1/2y + 1/2x + 3/2xy ≤ 1/2(1/y + 1/y + 3/y) = .5/2y
=> y ≤ 5/2 => y = 2
=> 4x = 13 + x (không có nghiệm x nguyên)

* z =3:
1 = 1/3y + 1/3x + 1/xy + 3/xy = 1/3y + 1/3x + 4/xy ≤ 1/3(1/y +1/y + 12/y) = 14/3y
=> y ≤ 14/3 => y = 3, 4
y = 3 => 9x = 15 + x (không có nghiệm x nguyên)
y = 4 => 12x = 16 + x (không có nghiệm x nguyên)

Vậy pt có nghiệm là (12,2,1) và các hoán vị của nó.

chúc bạn hok tốt

24 tháng 7 2020

a) Vì vai trò của x,y,z như nhau nên có thể giả sử \(x\ge y\ge z\)

Khi đó : \(xyz=4\left(x+y+z\right)\le12x\Rightarrow yz\le12\)

=> \(z^2\le12\Rightarrow z^2\in\left\{1;4;9\right\}\Rightarrow z\in\left\{1;2;3\right\}\)

+) Trường hợp 1 : 

z = 1 thì xy = 4(x + y + 1) <=> (x - 4)(y - 4) = 20

Nên x - 4 và y - 4 là ước của 20 với \(x-4\ge y-4\ge-3\)(do \(x\ge y\ge z=1\))

x - 420105421
y - 412451020
x24149865
y56891424

Vậy ta được cặp (x;y) là \(\left(24;5\right);\left(14;6\right);\left(9;8\right)\)

Xét tiếp trường hợp z = 2,z = 3 nữa nhé

b) Tương tự




 

8 tháng 11 2016

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+2}{2}=\frac{y+3}{3}=\frac{z+4}{4}=\frac{2x+4}{4}=\frac{2x+4+y+3+z+4}{4+3+4}=\frac{\left(2x+y+z\right)+\left(4+3+4\right)}{11}=\frac{14+11}{11}=\frac{25}{11}\)

+) \(\frac{x+2}{2}=\frac{25}{11}\Rightarrow x+2=\frac{50}{11}\Rightarrow x=\frac{28}{11}\)

+) \(\frac{y+3}{3}=\frac{25}{11}\Rightarrow y+3=\frac{75}{11}\Rightarrow y=\frac{42}{11}\)

+) \(\frac{z+4}{4}=\frac{25}{11}\Rightarrow z+4=\frac{100}{11}\Rightarrow z=\frac{56}{11}\)

\(\Rightarrow xyz=\frac{28}{11}.\frac{42}{11}.\frac{56}{11}=\frac{65856}{1331}\)

Vậy \(xyz=\frac{65856}{1331}\)

8 tháng 11 2016

x=\(\frac{28}{9}\)

22 tháng 4 2017

x = 100

y = 20

z = 3

14 tháng 2 2018

x=1

y=2

z=3